from fastapi import FastAPI from pydantic import BaseModel from typing import Dict, List import gradio as gr import pandas as pd import json from src.core import * app = FastAPI( title="Insight Finder", description="Find relevant technologies from a problem", ) class InputData(BaseModel): problem: str class InputConstraints(BaseModel): constraints: Dict[str, str] # This schema defines the structure for a single technology object class Technology(BaseModel): """Represents a single technology entry with its details.""" title: str purpose: str key_components: str advantages: str limitations: str id: int # This schema defines the root structure of the JSON class TechnologyData(BaseModel): """Represents the top-level object containing a list of technologies.""" technologies: List[Technology] @app.post("/process", response_model=TechnologyData) async def process(data: InputData): result = process_input(data, global_tech, global_tech_embeddings) return {"technologies": result} @app.post("/process-constraints", response_model=TechnologyData) async def process_constraints(constraints: InputConstraints): result = process_input_from_constraints(constraints.constraints, global_tech, global_tech_embeddings) return {"technologies": result} def make_json_serializable(data): """ Recursively convert tensors to floats in a data structure so it can be passed to json.dumps. """ if isinstance(data, dict): return {k: make_json_serializable(v) for k, v in data.items()} elif isinstance(data, list): return [make_json_serializable(item) for item in data] elif isinstance(data, tuple): return tuple(make_json_serializable(item) for item in data) elif hasattr(data, 'item'): # torch.Tensor with single value return float(data.item()) else: return data def process_input_gradio(problem_description: str): """ Processes the input problem description step-by-step for Gradio. Returns all intermediate results. """ # Step 1: Set Prompt prompt = set_prompt(problem_description) # Step 2: Retrieve Constraints constraints = retrieve_constraints(prompt) # Step 3: Stem Constraints constraints_stemmed = stem(constraints, "constraints") save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx") print(constraints_stemmed) # Step 4: Global Tech (already loaded, just acknowledge) # save_dataframe(global_tech_df, "global_tech.xlsx") # This is already done implicitly by loading # Step 5: Get Contrastive Similarities result_similarities, matrix = get_contrastive_similarities( constraints_stemmed, global_tech, global_tech_embeddings ) save_to_pickle(result_similarities) # Step 6: Find Best List Combinations best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix) # Step 7: Select Technologies best_technologies_id = select_technologies(best_combinations) # Step 8: Get Technologies by ID best_technologies = get_technologies_by_id(best_technologies_id, global_tech) # Format outputs for Gradio matrix_display = matrix #.tolist() # Convert numpy array to list of lists for better Gradio display result_similarities_display = { item['id2']: f"{item['constraint']['title']} ({item['similarity'].item():.3f})" for item in result_similarities } # Convert to JSON-safe format safe_best_combinations = make_json_serializable(best_combinations) safe_best_technologies = make_json_serializable(best_technologies) # Now this will work safely: best_combinations_display = json.dumps(safe_best_combinations, indent=2) best_technologies_display = json.dumps(safe_best_technologies, indent=2) print("best combinations") print(best_combinations_display) print("\nbest technologies") print(best_technologies_display) return ( prompt, "\n".join(f"'{k}': {v}" for k, v in d.items()), best_combinations_display, ", ".join(map(str, best_technologies_id)), best_technologies_display ) # --- Gradio Interface Setup --- # Define the input and output components input_problem = gr.Textbox( label="Enter Problem Description", placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics." ) output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False) output_constraints = gr.Textbox(label="2. Retrieved Constraints", interactive=False) output_best_combinations = gr.JSON(label="7. Best Technology Combinations Found") output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False) output_final_technologies = gr.JSON(label="9. Final Best Technologies") # Custom CSS for a professional look custom_css = """ /* General Body and Font Styling */ body { font-family: 'Segoe UI', 'Roboto', 'Helvetica Neue', Arial, sans-serif; color: #333; background-color: #f0f2f5; } /* Header Styling */ .gradio-container h1 { color: #0056b3; /* A deep blue for the main title */ text-align: center; margin-bottom: 10px; font-weight: 600; font-size: 2.5em; text-shadow: 1px 1px 2px rgba(0,0,0,0.1); } .gradio-container h2 { color: #007bff; /* A slightly lighter blue for subtitles */ text-align: center; margin-top: 0; margin-bottom: 30px; font-weight: 400; font-size: 1.2em; } /* Card-like styling for individual components */ .gradio-container .gr-box { background-color: #ffffff; border-radius: 12px; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08); padding: 20px; margin-bottom: 20px; border: 1px solid #e0e0e0; } /* Input Textbox Styling */ .gradio-container input[type="text"], .gradio-container textarea { border: 1px solid #ced4da; border-radius: 8px; padding: 12px 15px; font-size: 1em; color: #495057; transition: border-color 0.2s ease-in-out, box-shadow 0.2s ease-in-out; } .gradio-container input[type="text"]:focus, .gradio-container textarea:focus { border-color: #007bff; box-shadow: 0 0 0 0.2rem rgba(0, 123, 255, 0.25); outline: none; } /* Button Styling */ .gradio-container button { background-color: #28a745; /* A vibrant green for action */ color: white; border: none; border-radius: 8px; padding: 12px 25px; font-size: 1.1em; font-weight: 500; cursor: pointer; transition: background-color 0.2s ease-in-out, transform 0.1s ease-in-out; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); } .gradio-container button:hover { background-color: #218838; /* Darker green on hover */ transform: translateY(-2px); } .gradio-container button:active { transform: translateY(0); } /* Labels for outputs */ .gradio-container label { font-weight: 600; color: #495057; margin-bottom: 8px; display: block; /* Ensure labels are on their own line */ font-size: 1.1em; } /* JSON Output Specific Styling */ .gradio-container .json-display { background-color: #f8f9fa; border: 1px solid #e9ecef; border-radius: 8px; padding: 15px; font-family: 'SFMono-Regular', Consolas, 'Liberation Mono', Menlo, Courier, monospace; color: #212529; white-space: pre-wrap; /* Preserve whitespace and wrap long lines */ overflow-x: auto; /* Allow horizontal scrolling if content is too wide */ max-height: 400px; /* Limit height and add scroll */ } /* Responsive adjustments (Gradio handles a lot, but for specific tweaks) */ @media (max-width: 768px) { .gradio-container { padding: 15px; } .gradio-container h1 { font-size: 2em; } .gradio-container button { width: 100%; padding: 15px; } } /* Optional: Logo and Branding Placeholder */ /* You would typically add an image element in your gr.Blocks() for a logo */ /* Example if you have a logo image: */ /* .logo { display: block; margin: 0 auto 20px auto; max-width: 200px; height: auto; } */ """ # Create the Gradio Blocks demo with custom theme and CSS with gr.Blocks( theme=gr.themes.Soft(), # A modern, soft theme from Gradio css=custom_css ) as gradio_app_blocks: # Optional: Add your logo here # gr.Image("path/to/your/logo.png", width=150, show_label=False, container=False, elem_classes="logo") gr.Markdown("# Insight Finder: Step-by-Step Technology Selection") gr.Markdown("## Enter a problem description to see how relevant technologies are identified through various processing steps.") with gr.Row(): # Use a row for better layout on wider screens with gr.Column(scale=2): # Input takes more space input_problem.render() with gr.Column(scale=1): # Button in a smaller column gr.Markdown("Click to start the analysis:") process_button = gr.Button("Process Problem", elem_id="process_button") gr.Markdown("---") # Separator for visual clarity gr.Markdown("### Processing Steps & Results:") # Group outputs into columns for better organization with gr.Row(): with gr.Column(): output_prompt.render() output_constraints.render() with gr.Column(): output_best_combinations.render() output_selected_ids.render() output_final_technologies.render() # Link the button to the processing function process_button.click( fn=process_input_gradio, inputs=input_problem, outputs=[ output_prompt, output_constraints, output_best_combinations, output_selected_ids, output_final_technologies ] ) gr.mount_gradio_app(app, gradio_app_blocks, path="/gradio")