from src.services.utils import * from src.services.processor import * global_tech, global_tech_embeddings = load_technologies() def process_input(data, global_tech, global_tech_embeddings, data_type): if data_type == "problem": prompt = set_prompt(data.problem) constraints = retrieve_constraints(prompt) elif data_type == "constraints": constraints = data constraints_stemmed = stem(constraints, "constraints") save_dataframe(constraints_stemmed, "constraints_stemmed.xlsx") save_dataframe(global_tech, "global_tech.xlsx") result_similarities, matrix = get_contrastive_similarities(constraints_stemmed, global_tech, global_tech_embeddings, ) save_to_pickle(result_similarities) print(f"Matrix : {matrix} \n Constraints : {constraints_stemmed} \n Gloabl tech : {global_tech}") best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix) best_technologies_id = select_technologies(best_combinations) best_technologies = get_technologies_by_id(best_technologies_id,global_tech) return best_technologies def process_prior_art(technologies, data, data_type, techno_type): try: prior_art_reponse = search_prior_art(technologies, data, data_type, techno_type) prior_art_search = add_citations_and_collect_uris(prior_art_reponse) except Exception as e: print(f"An error occured during the process, trying again : {e}") prior_art_reponse = search_prior_art(technologies, data, data_type, techno_type) prior_art_search = add_citations_and_collect_uris(prior_art_reponse) return prior_art_search