File size: 7,282 Bytes
70d06c8
 
 
 
 
 
42c00ab
 
 
 
 
 
70d06c8
 
 
42c00ab
 
70d06c8
 
 
42c00ab
70d06c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42c00ab
70d06c8
 
 
 
 
 
 
 
 
 
 
 
 
42c00ab
 
70d06c8
42c00ab
 
70d06c8
 
 
 
 
 
 
42c00ab
70d06c8
 
 
 
 
 
 
 
 
42c00ab
 
70d06c8
 
 
 
 
 
42c00ab
70d06c8
 
 
 
 
 
 
 
 
 
42c00ab
 
70d06c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python
# coding: utf-8

from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
# Remove ChatGroq import
# from langchain_groq import ChatGroq
# Add ChatGoogleGenerativeAI import
from langchain_google_genai import ChatGoogleGenerativeAI
import os # Add os import for getenv

from langgraph.graph import StateGraph
from llmlingua import PromptCompressor

# Import get_model which now handles Gemini
from ki_gen.utils import ConfigSchema, DocProcessorState, get_model, format_doc 
from langgraph.checkpoint.sqlite import SqliteSaver


# ... (rest of the imports and llm_lingua functions remain the same)


# Requires ~2GB of RAM
def get_llm_lingua(compress_method:str = "llm_lingua2"):

    # Requires ~2GB memory
    if compress_method == "llm_lingua2":
        llm_lingua2 = PromptCompressor(
            model_name="microsoft/llmlingua-2-xlm-roberta-large-meetingbank",
            use_llmlingua2=True,
            device_map="cpu"
        )
        return llm_lingua2
    
    # Requires ~8GB memory
    elif compress_method == "llm_lingua":
        llm_lingua = PromptCompressor(
            model_name="microsoft/phi-2",
            device_map="cpu"
        )
        return llm_lingua
    raise ValueError("Incorrect compression method, should be 'llm_lingua' or 'llm_lingua2'")



def compress(state: DocProcessorState, config: ConfigSchema):
    """
    This node compresses last processing result for each doc using llm_lingua
    """
    doc_process_histories = state["docs_in_processing"]
    llm_lingua = get_llm_lingua(config["configurable"].get("compression_method") or "llm_lingua2")
    for doc_process_history in doc_process_histories:
        doc_process_history.append(llm_lingua.compress_prompt(
            doc = str(doc_process_history[-1]),
            rate=config["configurable"].get("compress_rate") or 0.33,
            force_tokens=config["configurable"].get("force_tokens") or ['\n', '?', '.', '!', ',']
            )["compressed_prompt"]
        )
    
    return {"docs_in_processing": doc_process_histories, "current_process_step" : state["current_process_step"] + 1}

# Update default model
def summarize_docs(state: DocProcessorState, config: ConfigSchema):
    """
    This node summarizes all docs in state["valid_docs"]
    """

    prompt = """You are a 3GPP standardization expert.
Summarize the provided document in simple technical English for other experts in the field.

Document:
{document}"""
    sysmsg = ChatPromptTemplate.from_messages([
        ("system", prompt)
    ])
    # Update default model name
    model = config["configurable"].get("summarize_model") or "gemini-2.0-flash" 
    doc_process_histories = state["docs_in_processing"]
    # Use get_model to handle instantiation
    llm_summarize = get_model(model) 
    summarize_chain = sysmsg | llm_summarize | StrOutputParser()

    for doc_process_history in doc_process_histories:
        doc_process_history.append(summarize_chain.invoke({"document" : str(doc_process_history[-1])}))

    return {"docs_in_processing": doc_process_histories, "current_process_step": state["current_process_step"] + 1}

# Update default model
def custom_process(state: DocProcessorState):
    """
    Custom processing step, params are stored in a dict in state["process_steps"][state["current_process_step"]]
    processing_model : the LLM which will perform the processing
    context : the previous processing results to send as context to the LLM
    user_prompt : the prompt/task which will be appended to the context before sending to the LLM
    """

    processing_params = state["process_steps"][state["current_process_step"]]
    # Update default model name
    model = processing_params.get("processing_model") or "gemini-2.0-flash" 
    user_prompt = processing_params["prompt"]
    context = processing_params.get("context") or [0]
    doc_process_histories = state["docs_in_processing"]
    if not isinstance(context, list):
        context = [context]

    # Use get_model
    processing_chain = get_model(model=model) | StrOutputParser()

    for doc_process_history in doc_process_histories:
        context_str = ""
        for i, context_element in enumerate(context):
            context_str += f"### TECHNICAL INFORMATION {i+1} \n {doc_process_history[context_element]}\n\n"
        doc_process_history.append(processing_chain.invoke(context_str + user_prompt))

    return {"docs_in_processing" : doc_process_histories, "current_process_step" : state["current_process_step"] + 1}

# ... (rest of the file remains the same)

def final(state: DocProcessorState):
    """
    A node to store the final results of processing in the 'valid_docs' field 
    """
    return {"valid_docs" : [doc_process_history[-1] for doc_process_history in state["docs_in_processing"]]}

# TODO : remove this node and use conditional entry point instead
def get_process_steps(state: DocProcessorState, config: ConfigSchema):
    """
    Dummy node
    """
    # if not process_steps:
    #     process_steps = eval(input("Enter processing steps: "))
    return {"current_process_step": 0, "docs_in_processing" : [[format_doc(doc)] for doc in state["valid_docs"]]}


def next_processor_step(state: DocProcessorState):
    """
    Conditional edge function to go to next processing step
    """
    process_steps = state["process_steps"]
    if state["current_process_step"] < len(process_steps):
        step = process_steps[state["current_process_step"]]
        if isinstance(step, dict):
            step = "custom"
    else:
        step = "final"

    return step


def build_data_processor_graph(memory):
    """
    Builds the data processor graph
    """
    #with SqliteSaver.from_conn_string(":memory:") as memory : 

    graph_builder_doc_processor = StateGraph(DocProcessorState)

    graph_builder_doc_processor.add_node("get_process_steps", get_process_steps)
    graph_builder_doc_processor.add_node("summarize", summarize_docs)
    graph_builder_doc_processor.add_node("compress", compress)
    graph_builder_doc_processor.add_node("custom", custom_process)
    graph_builder_doc_processor.add_node("final", final)

    graph_builder_doc_processor.add_edge("__start__", "get_process_steps")
    graph_builder_doc_processor.add_conditional_edges(
        "get_process_steps",
        next_processor_step,
        {"compress" : "compress", "final": "final", "summarize": "summarize", "custom" : "custom"}
    )
    graph_builder_doc_processor.add_conditional_edges(
        "summarize",
        next_processor_step,
        {"compress" : "compress", "final": "final", "custom" : "custom"}
    )
    graph_builder_doc_processor.add_conditional_edges(
        "compress",
        next_processor_step,
        {"summarize" : "summarize", "final": "final", "custom" : "custom"}
    )
    graph_builder_doc_processor.add_conditional_edges(
        "custom",
        next_processor_step,
        {"summarize" : "summarize", "final": "final", "compress" : "compress", "custom" : "custom"}
    )
    graph_builder_doc_processor.add_edge("final", "__end__")
    
    graph_doc_processor = graph_builder_doc_processor.compile(checkpointer=memory)
    return graph_doc_processor