File size: 10,379 Bytes
84a9b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aafbd13
84a9b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aafbd13
84a9b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a758b55
 
 
84a9b26
a758b55
 
 
 
 
 
84a9b26
a758b55
 
 
 
 
 
84a9b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a758b55
84a9b26
 
 
 
 
 
 
 
 
aafbd13
84a9b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0512bfc
84a9b26
 
 
6bb602d
84a9b26
 
 
27d993f
 
0512bfc
 
 
 
 
 
84a9b26
0512bfc
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import streamlit as st
import os
import numpy as np
import pandas as pd
from logger import logger
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import json
from utils import fs,validate_email
from enums import SAVE_PATH, ELO_JSON_PATH, ELO_CSV_PATH, EMAIL_PATH


def write_email(email):
    if fs.exists(EMAIL_PATH):
        with fs.open(EMAIL_PATH, 'rb') as f:
            existing_content = f.read().decode('utf-8')
    else:
        existing_content = ''

    new_content = existing_content + email + '\n'

    with fs.open(EMAIL_PATH, 'wb') as f:
        f.write(new_content.encode('utf-8'))

def get_model_abbreviation(model_name):
    abbrev_map = {
        'Ori Apex': 'Ori Apex',
        'Ori Apex XT': 'Ori Apex XT',
        'deepgram': 'Deepgram',
        'Ori Swift': 'Ori Swift',
        'Ori Prime': 'Ori Prime',
        'azure' : 'Azure'
    }
    return abbrev_map.get(model_name, model_name)


def calculate_metrics(df):
    models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
    metrics = {}

    for model in models:
        appearances = df[f'{model}_appearance'].sum()
        wins = df[f'{model}_score'].sum()
        durations = df[df[f'{model}_appearance'] == 1][f'{model}_duration']

        if appearances > 0:
            win_rate = (wins / appearances) * 100
            avg_duration = durations.mean()
            duration_std = durations.std()
        else:
            win_rate = 0
            avg_duration = 0
            duration_std = 0

        metrics[model] = {
            'appearances': appearances,
            'wins': wins,
            'win_rate': win_rate,
            'avg_response_time': avg_duration,
            'response_time_std': duration_std
        }

    return metrics

def create_win_rate_chart(metrics):
    models = list(metrics.keys())
    win_rates = [metrics[model]['win_rate'] for model in models]

    fig = go.Figure(data=[
        go.Bar(
            x=[get_model_abbreviation(model) for model in models],
            y=win_rates,
            text=[f'{rate:.1f}%' for rate in win_rates],
            textposition='auto',
            hovertext=models
        )
    ])

    fig.update_layout(
        title='Win Rate by Model',
        xaxis_title='Model',
        yaxis_title='Win Rate (%)',
        yaxis_range=[0, 100]
    )

    return fig

def create_appearance_chart(metrics):
    models = list(metrics.keys())
    appearances = [metrics[model]['appearances'] for model in models]

    fig = px.pie(
        values=appearances,
        names=[get_model_abbreviation(model) for model in models],
        title='Model Appearances Distribution',
        # hover_data=[models]
    )

    return fig

def create_head_to_head_matrix(df):
    models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
    matrix = np.zeros((len(models), len(models)))

    for i, model1 in enumerate(models):
        for j, model2 in enumerate(models):
            if i != j:
                matches = df[
                    (df[f'{model1}_appearance'] == 1) &
                    (df[f'{model2}_appearance'] == 1)
                ]
                if len(matches) > 0:
                    win_rate = (matches[f'{model1}_score'].sum() / len(matches)) * 100
                    matrix[i][j] = win_rate

    fig = go.Figure(data=go.Heatmap(
        z=matrix,
        x=[get_model_abbreviation(model) for model in models],
        y=[get_model_abbreviation(model) for model in models],
        text=[[f'{val:.1f}%' if val > 0 else '' for val in row] for row in matrix],
        texttemplate='%{text}',
        colorscale='RdYlBu',
        zmin=0,
        zmax=100
    ))

    fig.update_layout(
        title='Head-to-Head Win Rates',
        xaxis_title='Opponent Model',
        yaxis_title='Model'
    )

    return fig

def create_elo_chart(df):
    fig = make_subplots(rows=1, cols=1,
                    row_heights=[0.7])

    for column in df.columns:
        fig.add_trace(
            go.Scatter(
                x=list(range(len(df))),
                y=df[column],
                name=column,
                mode='lines+markers'
            ),
            row=1, col=1
        )

    fig.update_layout(
        title='Model ELO Ratings Analysis',
        showlegend=True,
        hovermode='x unified'
    )

    fig.update_xaxes(title_text='Match Number', row=1, col=1)

    return fig

def create_metric_container(label, value, full_name=None):
    container = st.container()
    with container:
        st.markdown(f"**{label}**")
        if full_name:
            st.markdown(f"<h3 style='margin-top: 0;'>{value}</h3>", unsafe_allow_html=True)
            st.caption(f"Full name: {full_name}")
        else:
            st.markdown(f"<h3 style='margin-top: 0;'>{value}</h3>", unsafe_allow_html=True)

def on_refresh_click():
    st.toast("Refreshing data... please wait",icon="πŸ”„")
    with fs.open(SAVE_PATH, 'rb') as f:
        st.session_state.df = pd.read_csv(f)

    try:
        with fs.open(ELO_JSON_PATH,'r') as f:
            st.session_state.elo_json = json.load(f)
    except Exception as e:
        logger.error("Error while reading elo json file %s",e)
        st.session_state.elo_json = None

    try:
        with fs.open(ELO_CSV_PATH,'rb') as f:
            st.session_state.elo_df = pd.read_csv(f)
    except Exception as e:
        logger.error("Error while reading elo csv file %s",e)
        st.session_state.elo_df = None

def dashboard():
    st.title('Model Arena Scoreboard')

    if "df" not in st.session_state:
        with fs.open(SAVE_PATH, 'rb') as f:
            st.session_state.df = pd.read_csv(f)
    if "elo_json" not in st.session_state:
        with fs.open(ELO_JSON_PATH,'r') as f:
            elo_json = json.load(f)
            st.session_state.elo_json = elo_json
    if "elo_df" not in st.session_state:
        with fs.open(ELO_CSV_PATH,'rb') as f:
            elo_df = pd.read_csv(f)
            st.session_state.elo_df = elo_df

    st.button("πŸ”„ Refresh",on_click=on_refresh_click,key="refresh_btn")

    if len(st.session_state.df) != 0:
        metrics = calculate_metrics(st.session_state.df)

        MODEL_DESCRIPTIONS = {
            "Ori Prime": "Foundational, large, and stable.",
            "Ori Swift": "Lighter and faster than Ori Prime.",
            "Ori Apex": "The top-performing model, fast and stable.",
            "Ori Apex XT": "Enhanced with more training, though slightly less stable than Ori Apex.",
            "Deepgram" : "Deepgram Nova-2 API",
            "Azure" : "Azure Speech Services API"
        }

        st.header('Model Descriptions')

        cols = st.columns(2)
        for idx, (model, description) in enumerate(MODEL_DESCRIPTIONS.items()):
            with cols[idx % 2]:
                st.markdown(f"""
                    <div style='padding: 1rem; border: 1px solid #e1e4e8; border-radius: 6px; margin-bottom: 1rem;'>
                        <h3 style='margin: 0; margin-bottom: 0.5rem;'>{model}</h3>
                        <p style='margin: 0; color: #6e7681;'>{description}</p>
                    </div>
                    """, unsafe_allow_html=True)

        st.header('Overall Performance')

        col1, col2, col3= st.columns(3)

        with col1:
            create_metric_container("Total Matches", len(st.session_state.df))

        # best_model = max(metrics.items(), key=lambda x: x[1]['win_rate'])[0]
        best_model = max(st.session_state.elo_json.items(), key=lambda x: x[1])[0] if st.session_state.elo_json else max(metrics.items(), key=lambda x: x[1]['win_rate'])[0]
        with col2:
            create_metric_container(
                "Best Model",
                get_model_abbreviation(best_model),
                full_name=best_model
            )

        most_appearances = max(metrics.items(), key=lambda x: x[1]['appearances'])[0]
        with col3:
            create_metric_container(
                "Most Used",
                get_model_abbreviation(most_appearances),
                full_name=most_appearances
            )

        metrics_df = pd.DataFrame.from_dict(metrics, orient='index')
        metrics_df['win_rate'] = metrics_df['win_rate'].round(2)
        metrics_df.drop(["avg_response_time","response_time_std"],axis=1,inplace=True)
        metrics_df.index = [get_model_abbreviation(model) for model in metrics_df.index]
        st.dataframe(metrics_df,use_container_width=True)

        st.header('Win Rates')
        win_rate_chart = create_win_rate_chart(metrics)
        st.plotly_chart(win_rate_chart, use_container_width=True)

        st.header('Appearance Distribution')
        appearance_chart = create_appearance_chart(metrics)
        st.plotly_chart(appearance_chart, use_container_width=True)

        if st.session_state.elo_json is not None and st.session_state.elo_df is not None:
            st.header('Elo Ratings')
            st.dataframe(pd.DataFrame(st.session_state.elo_json,index=[0]),use_container_width=True)
            elo_progression_chart = create_elo_chart(st.session_state.elo_df)
            st.plotly_chart(elo_progression_chart, use_container_width=True)

        st.header('Head-to-Head Analysis')
        matrix_chart = create_head_to_head_matrix(st.session_state.df)
        st.plotly_chart(matrix_chart, use_container_width=True)

    else:
        st.write("No Data to show")

if __name__ == "__main__":
    if 'logged_in' not in st.session_state:
        st.session_state.logged_in = False

    if st.session_state.logged_in:
        dashboard()
    else:
        with st.form("contact_us_form"):
            st.subheader("Please enter your email to view the scoreboard")

            email = st.text_input("Email")

            submit_button = st.form_submit_button("Submit")

        if submit_button:
            if not email:
                st.error("Please fill in all fields")
            else:
                if not validate_email(email):
                    st.error("Please enter a valid email address")
                else:
                    st.session_state.logged_in = True
                    st.session_state.user_email = email
                    write_email(st.session_state.user_email)
                    st.success("Thanks for submitting your email")
                    dashboard()