File size: 10,379 Bytes
84a9b26 aafbd13 84a9b26 aafbd13 84a9b26 a758b55 84a9b26 a758b55 84a9b26 a758b55 84a9b26 a758b55 84a9b26 aafbd13 84a9b26 0512bfc 84a9b26 6bb602d 84a9b26 27d993f 0512bfc 84a9b26 0512bfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import streamlit as st
import os
import numpy as np
import pandas as pd
from logger import logger
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import json
from utils import fs,validate_email
from enums import SAVE_PATH, ELO_JSON_PATH, ELO_CSV_PATH, EMAIL_PATH
def write_email(email):
if fs.exists(EMAIL_PATH):
with fs.open(EMAIL_PATH, 'rb') as f:
existing_content = f.read().decode('utf-8')
else:
existing_content = ''
new_content = existing_content + email + '\n'
with fs.open(EMAIL_PATH, 'wb') as f:
f.write(new_content.encode('utf-8'))
def get_model_abbreviation(model_name):
abbrev_map = {
'Ori Apex': 'Ori Apex',
'Ori Apex XT': 'Ori Apex XT',
'deepgram': 'Deepgram',
'Ori Swift': 'Ori Swift',
'Ori Prime': 'Ori Prime',
'azure' : 'Azure'
}
return abbrev_map.get(model_name, model_name)
def calculate_metrics(df):
models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
metrics = {}
for model in models:
appearances = df[f'{model}_appearance'].sum()
wins = df[f'{model}_score'].sum()
durations = df[df[f'{model}_appearance'] == 1][f'{model}_duration']
if appearances > 0:
win_rate = (wins / appearances) * 100
avg_duration = durations.mean()
duration_std = durations.std()
else:
win_rate = 0
avg_duration = 0
duration_std = 0
metrics[model] = {
'appearances': appearances,
'wins': wins,
'win_rate': win_rate,
'avg_response_time': avg_duration,
'response_time_std': duration_std
}
return metrics
def create_win_rate_chart(metrics):
models = list(metrics.keys())
win_rates = [metrics[model]['win_rate'] for model in models]
fig = go.Figure(data=[
go.Bar(
x=[get_model_abbreviation(model) for model in models],
y=win_rates,
text=[f'{rate:.1f}%' for rate in win_rates],
textposition='auto',
hovertext=models
)
])
fig.update_layout(
title='Win Rate by Model',
xaxis_title='Model',
yaxis_title='Win Rate (%)',
yaxis_range=[0, 100]
)
return fig
def create_appearance_chart(metrics):
models = list(metrics.keys())
appearances = [metrics[model]['appearances'] for model in models]
fig = px.pie(
values=appearances,
names=[get_model_abbreviation(model) for model in models],
title='Model Appearances Distribution',
# hover_data=[models]
)
return fig
def create_head_to_head_matrix(df):
models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
matrix = np.zeros((len(models), len(models)))
for i, model1 in enumerate(models):
for j, model2 in enumerate(models):
if i != j:
matches = df[
(df[f'{model1}_appearance'] == 1) &
(df[f'{model2}_appearance'] == 1)
]
if len(matches) > 0:
win_rate = (matches[f'{model1}_score'].sum() / len(matches)) * 100
matrix[i][j] = win_rate
fig = go.Figure(data=go.Heatmap(
z=matrix,
x=[get_model_abbreviation(model) for model in models],
y=[get_model_abbreviation(model) for model in models],
text=[[f'{val:.1f}%' if val > 0 else '' for val in row] for row in matrix],
texttemplate='%{text}',
colorscale='RdYlBu',
zmin=0,
zmax=100
))
fig.update_layout(
title='Head-to-Head Win Rates',
xaxis_title='Opponent Model',
yaxis_title='Model'
)
return fig
def create_elo_chart(df):
fig = make_subplots(rows=1, cols=1,
row_heights=[0.7])
for column in df.columns:
fig.add_trace(
go.Scatter(
x=list(range(len(df))),
y=df[column],
name=column,
mode='lines+markers'
),
row=1, col=1
)
fig.update_layout(
title='Model ELO Ratings Analysis',
showlegend=True,
hovermode='x unified'
)
fig.update_xaxes(title_text='Match Number', row=1, col=1)
return fig
def create_metric_container(label, value, full_name=None):
container = st.container()
with container:
st.markdown(f"**{label}**")
if full_name:
st.markdown(f"<h3 style='margin-top: 0;'>{value}</h3>", unsafe_allow_html=True)
st.caption(f"Full name: {full_name}")
else:
st.markdown(f"<h3 style='margin-top: 0;'>{value}</h3>", unsafe_allow_html=True)
def on_refresh_click():
st.toast("Refreshing data... please wait",icon="π")
with fs.open(SAVE_PATH, 'rb') as f:
st.session_state.df = pd.read_csv(f)
try:
with fs.open(ELO_JSON_PATH,'r') as f:
st.session_state.elo_json = json.load(f)
except Exception as e:
logger.error("Error while reading elo json file %s",e)
st.session_state.elo_json = None
try:
with fs.open(ELO_CSV_PATH,'rb') as f:
st.session_state.elo_df = pd.read_csv(f)
except Exception as e:
logger.error("Error while reading elo csv file %s",e)
st.session_state.elo_df = None
def dashboard():
st.title('Model Arena Scoreboard')
if "df" not in st.session_state:
with fs.open(SAVE_PATH, 'rb') as f:
st.session_state.df = pd.read_csv(f)
if "elo_json" not in st.session_state:
with fs.open(ELO_JSON_PATH,'r') as f:
elo_json = json.load(f)
st.session_state.elo_json = elo_json
if "elo_df" not in st.session_state:
with fs.open(ELO_CSV_PATH,'rb') as f:
elo_df = pd.read_csv(f)
st.session_state.elo_df = elo_df
st.button("π Refresh",on_click=on_refresh_click,key="refresh_btn")
if len(st.session_state.df) != 0:
metrics = calculate_metrics(st.session_state.df)
MODEL_DESCRIPTIONS = {
"Ori Prime": "Foundational, large, and stable.",
"Ori Swift": "Lighter and faster than Ori Prime.",
"Ori Apex": "The top-performing model, fast and stable.",
"Ori Apex XT": "Enhanced with more training, though slightly less stable than Ori Apex.",
"Deepgram" : "Deepgram Nova-2 API",
"Azure" : "Azure Speech Services API"
}
st.header('Model Descriptions')
cols = st.columns(2)
for idx, (model, description) in enumerate(MODEL_DESCRIPTIONS.items()):
with cols[idx % 2]:
st.markdown(f"""
<div style='padding: 1rem; border: 1px solid #e1e4e8; border-radius: 6px; margin-bottom: 1rem;'>
<h3 style='margin: 0; margin-bottom: 0.5rem;'>{model}</h3>
<p style='margin: 0; color: #6e7681;'>{description}</p>
</div>
""", unsafe_allow_html=True)
st.header('Overall Performance')
col1, col2, col3= st.columns(3)
with col1:
create_metric_container("Total Matches", len(st.session_state.df))
# best_model = max(metrics.items(), key=lambda x: x[1]['win_rate'])[0]
best_model = max(st.session_state.elo_json.items(), key=lambda x: x[1])[0] if st.session_state.elo_json else max(metrics.items(), key=lambda x: x[1]['win_rate'])[0]
with col2:
create_metric_container(
"Best Model",
get_model_abbreviation(best_model),
full_name=best_model
)
most_appearances = max(metrics.items(), key=lambda x: x[1]['appearances'])[0]
with col3:
create_metric_container(
"Most Used",
get_model_abbreviation(most_appearances),
full_name=most_appearances
)
metrics_df = pd.DataFrame.from_dict(metrics, orient='index')
metrics_df['win_rate'] = metrics_df['win_rate'].round(2)
metrics_df.drop(["avg_response_time","response_time_std"],axis=1,inplace=True)
metrics_df.index = [get_model_abbreviation(model) for model in metrics_df.index]
st.dataframe(metrics_df,use_container_width=True)
st.header('Win Rates')
win_rate_chart = create_win_rate_chart(metrics)
st.plotly_chart(win_rate_chart, use_container_width=True)
st.header('Appearance Distribution')
appearance_chart = create_appearance_chart(metrics)
st.plotly_chart(appearance_chart, use_container_width=True)
if st.session_state.elo_json is not None and st.session_state.elo_df is not None:
st.header('Elo Ratings')
st.dataframe(pd.DataFrame(st.session_state.elo_json,index=[0]),use_container_width=True)
elo_progression_chart = create_elo_chart(st.session_state.elo_df)
st.plotly_chart(elo_progression_chart, use_container_width=True)
st.header('Head-to-Head Analysis')
matrix_chart = create_head_to_head_matrix(st.session_state.df)
st.plotly_chart(matrix_chart, use_container_width=True)
else:
st.write("No Data to show")
if __name__ == "__main__":
if 'logged_in' not in st.session_state:
st.session_state.logged_in = False
if st.session_state.logged_in:
dashboard()
else:
with st.form("contact_us_form"):
st.subheader("Please enter your email to view the scoreboard")
email = st.text_input("Email")
submit_button = st.form_submit_button("Submit")
if submit_button:
if not email:
st.error("Please fill in all fields")
else:
if not validate_email(email):
st.error("Please enter a valid email address")
else:
st.session_state.logged_in = True
st.session_state.user_email = email
write_email(st.session_state.user_email)
st.success("Thanks for submitting your email")
dashboard() |