ASR_arena / app.py
chinmayc3's picture
converted app to multipage to improve performance
84a9b26
raw
history blame
17.1 kB
import base64
import io
import json
import os
import random
import tempfile
import time
import boto3
import fsspec
import librosa
import numpy as np
import pandas as pd
import requests
import streamlit as st
from audio_recorder_streamlit import audio_recorder
from logger import logger
from utils import fs,s3_client
from enums import SAVE_PATH, ELO_JSON_PATH, ELO_CSV_PATH, EMAIL_PATH, TEMP_DIR, CREATE_TASK_URL
def create_files():
if not fs.exists(SAVE_PATH):
logger.info("Creating save file")
with fs.open(SAVE_PATH, 'wb') as f:
headers = [
'email',
'path',
'Ori Apex_score', 'Ori Apex XT_score', 'deepgram_score', 'Ori Swift_score', 'Ori Prime_score',
'Ori Apex_appearance', 'Ori Apex XT_appearance', 'deepgram_appearance', 'Ori Swift_appearance', 'Ori Prime_appearance',
'Ori Apex_duration', 'Ori Apex XT_duration', 'deepgram_duration', 'Ori Swift_duration', 'Ori Prime_duration','azure_score','azure_appearance','azure_duration'
]
df = pd.DataFrame(columns=headers)
df.to_csv(f, index=False)
if not fs.exists(ELO_JSON_PATH):
logger.info("Creating Elo json file")
with fs.open(ELO_JSON_PATH, 'w') as f:
models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
models = {model: 1000 for model in models}
json.dump(models, f)
if not fs.exists(ELO_CSV_PATH):
logger.info("Creating Elo csv file")
with fs.open(ELO_CSV_PATH, 'wb') as f:
models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
models = {k:1000 for k in models}
df = pd.DataFrame(models,index=[0])
df.to_csv(f, index=False)
if not fs.exists(EMAIL_PATH):
logger.info("Creating email file")
with fs.open(EMAIL_PATH, 'wb') as f:
existing_content = ''
new_content = existing_content
with fs.open(EMAIL_PATH, 'w') as f:
f.write(new_content.encode('utf-8'))
def write_email(email):
if fs.exists(EMAIL_PATH):
with fs.open(EMAIL_PATH, 'rb') as f:
existing_content = f.read().decode('utf-8')
else:
existing_content = ''
new_content = existing_content + email + '\n'
with fs.open(EMAIL_PATH, 'wb') as f:
f.write(new_content.encode('utf-8'))
class ResultWriter:
def __init__(self, save_path):
self.save_path = save_path
self.headers = [
'email',
'path',
'Ori Apex_score', 'Ori Apex XT_score', 'deepgram_score', 'Ori Swift_score', 'Ori Prime_score',
'Ori Apex_appearance', 'Ori Apex XT_appearance', 'deepgram_appearance', 'Ori Swift_appearance', 'Ori Prime_appearance',
'Ori Apex_duration', 'Ori Apex XT_duration', 'deepgram_duration', 'Ori Swift_duration', 'Ori Prime_duration','azure_score','azure_appearance','azure_duration'
]
self.models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
if not fs.exists(save_path):
print("CSV File not found in s3 bucket creating a new one",save_path)
with fs.open(save_path, 'wb') as f:
df = pd.DataFrame(columns=self.headers)
df.to_csv(f, index=False)
def write_result(self,
user_email,
audio_path,
option_1_duration_info,
option_2_duration_info,
winner_model=None,
loser_model=None,
both_preferred=False,
none_preferred=False
):
payload = {
"task":"write_result",
"payload":{
"winner_model":winner_model,
"loser_model":loser_model,
"both_preferred":both_preferred,
"none_preferred":none_preferred,
"user_email":user_email,
"audio_path":audio_path,
"option_1_duration_info":option_1_duration_info,
"option_2_duration_info":option_2_duration_info
}
}
send_task(payload)
def decode_audio_array(base64_string):
bytes_data = base64.b64decode(base64_string)
buffer = io.BytesIO(bytes_data)
audio_array = np.load(buffer)
return audio_array
def send_task(payload):
header = {
"Authorization": f"Bearer {os.getenv('CREATE_TASK_API_KEY')}"
}
response = requests.post(CREATE_TASK_URL,json=payload,headers=header)
try:
response = response.json()
except Exception as e:
logger.error("Error while sending task %s",e)
logger.debug("Payload which caused the error %s",payload)
return "error please try again"
if payload["task"] == "transcribe_with_fastapi":
return response["text"]
elif payload["task"] == "fetch_audio":
array = response["array"]
array = decode_audio_array(array)
sampling_rate = response["sample_rate"]
filepath = response["filepath"]
return array,sampling_rate,filepath
def encode_audio_array(audio_array):
buffer = io.BytesIO()
np.save(buffer, audio_array)
buffer.seek(0)
base64_bytes = base64.b64encode(buffer.read())
base64_string = base64_bytes.decode('utf-8')
return base64_string
def call_function(model_name):
if st.session_state.current_audio_type == "recorded":
y,_ = librosa.load(st.session_state.audio_path,sr=22050,mono=True)
encoded_array = encode_audio_array(y)
payload = {
"task":"transcribe_with_fastapi",
"payload":{
"file_path":encoded_array,
"model_name":model_name,
"audio_b64":True
}}
else:
payload = {
"task":"transcribe_with_fastapi",
"payload":{
"file_path":st.session_state.audio_path,
"model_name":model_name,
"audio_b64":False
}}
transcript = send_task(payload)
return transcript
def transcribe_audio():
with st.spinner("🎯 Transcribing audio... this may take up to 30 seconds"):
models_list = ["Ori Apex", "Ori Apex XT", "deepgram", "Ori Swift", "Ori Prime","azure"]
model1_name, model2_name = random.sample(models_list, 2)
st.session_state.option_1_model_name = model1_name
st.session_state.option_2_model_name = model2_name
time_1 = time.time()
transcript1 = call_function(model1_name)
time_2 = time.time()
transcript2 = call_function(model2_name)
time_3 = time.time()
st.session_state.option_2_response_time = round(time_3 - time_2,3)
st.session_state.option_1_response_time = round(time_2 - time_1,3)
return transcript1, transcript2
def reset_state():
st.session_state.audio = None
st.session_state.current_audio_type = None
st.session_state.audio_path = ""
st.session_state.option_selected = False
st.session_state.transcribed = False
st.session_state.option_2_model_name = ""
st.session_state.option_1_model_name = ""
st.session_state.option_1 = ""
st.session_state.option_2 = ""
st.session_state.option_1_model_name_state = ""
st.session_state.option_2_model_name_state = ""
def on_option_1_click():
if st.session_state.transcribed and not st.session_state.option_selected:
st.session_state.option_1_model_name_state = f"πŸ‘‘ {st.session_state.option_1_model_name} πŸ‘‘"
st.session_state.option_2_model_name_state = f"πŸ‘Ž {st.session_state.option_2_model_name} πŸ‘Ž"
st.session_state.choice = f"You chose Option 1. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
result_writer.write_result(
st.session_state.user_email,
st.session_state.audio_path,
winner_model=st.session_state.option_1_model_name,
loser_model=st.session_state.option_2_model_name,
option_1_duration_info=[(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
option_2_duration_info=[(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)]
)
st.session_state.option_selected = True
def on_option_2_click():
if st.session_state.transcribed and not st.session_state.option_selected:
st.session_state.option_2_model_name_state = f"πŸ‘‘ {st.session_state.option_2_model_name} πŸ‘‘"
st.session_state.option_1_model_name_state = f"πŸ‘Ž {st.session_state.option_1_model_name} πŸ‘Ž"
st.session_state.choice = f"You chose Option 2. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
result_writer.write_result(
st.session_state.user_email,
st.session_state.audio_path,
winner_model=st.session_state.option_2_model_name,
loser_model=st.session_state.option_1_model_name,
option_1_duration_info=[(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
option_2_duration_info=[(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)]
)
st.session_state.option_selected = True
def on_option_both_click():
if st.session_state.transcribed and not st.session_state.option_selected:
st.session_state.option_2_model_name_state = f"πŸ‘‘ {st.session_state.option_2_model_name} πŸ‘‘"
st.session_state.option_1_model_name_state = f"πŸ‘‘ {st.session_state.option_1_model_name} πŸ‘‘"
st.session_state.choice = f"You chose Prefer both. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
result_writer.write_result(
st.session_state.user_email,
st.session_state.audio_path,
winner_model=st.session_state.option_1_model_name,
loser_model=st.session_state.option_2_model_name,
option_1_duration_info=[(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
option_2_duration_info=[(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)],
both_preferred=True
)
st.session_state.option_selected = True
def on_option_none_click():
if st.session_state.transcribed and not st.session_state.option_selected:
st.session_state.option_1_model_name_state = f"πŸ‘Ž {st.session_state.option_1_model_name} πŸ‘Ž"
st.session_state.option_2_model_name_state = f"πŸ‘Ž {st.session_state.option_2_model_name} πŸ‘Ž"
st.session_state.choice = f"You chose none option. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
result_writer.write_result(
st.session_state.user_email,
st.session_state.audio_path,
winner_model=st.session_state.option_1_model_name,
loser_model=st.session_state.option_2_model_name,
option_1_duration_info=[(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
option_2_duration_info=[(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)],
none_preferred=True
)
st.session_state.option_selected = True
def on_click_transcribe():
if st.session_state.has_audio:
option_1_text, option_2_text = transcribe_audio(
)
st.session_state.option_1 = option_1_text
st.session_state.option_2 = option_2_text
st.session_state.transcribed = True
st.session_state.option_1_model_name_state = ""
st.session_state.option_2_model_name_state = ""
st.session_state.option_selected = None
def on_random_click():
reset_state()
fetch_audio_payload = {"task": "fetch_audio"}
array, sampling_rate, filepath = send_task(fetch_audio_payload)
st.session_state.audio = {"data":array,"sample_rate":sampling_rate,"format":"audio/wav"}
st.session_state.has_audio = True
st.session_state.current_audio_type = "random"
st.session_state.audio_path = filepath
st.session_state.option_selected = None
result_writer = ResultWriter(SAVE_PATH)
def main():
st.title("βš”οΈ Ori Speech-To-Text Arena βš”οΈ")
if "has_audio" not in st.session_state:
st.session_state.has_audio = False
if "audio" not in st.session_state:
st.session_state.audio = None
if "audio_path" not in st.session_state:
st.session_state.audio_path = ""
if "option_1" not in st.session_state:
st.session_state.option_1 = ""
if "option_2" not in st.session_state:
st.session_state.option_2 = ""
if "transcribed" not in st.session_state:
st.session_state.transcribed = False
if "option_1_model_name_state" not in st.session_state:
st.session_state.option_1_model_name_state = ""
if "option_1_model_name" not in st.session_state:
st.session_state.option_1_model_name = ""
if "option_2_model_name" not in st.session_state:
st.session_state.option_2_model_name = ""
if "option_2_model_name_state" not in st.session_state:
st.session_state.option_2_model_name_state = ""
if "user_email" not in st.session_state:
st.session_state.user_email = ""
INSTR = """
## Instructions:
* Record audio to recognise speech (or press 🎲 for random Audio).
* Click on transcribe audio button to commence the transcription process.
* Read the two options one after the other while listening to the audio.
* Vote on which transcript you prefer.
* Note:
* Model names are revealed after the vote is cast.
* Currently only Indian Hindi language is supported, and
the results will be in Hinglish (Hindi in Latin script)
* Random audios are only in hindi
* It may take up to 30 seconds for speech recognition in some cases.
""".strip()
st.markdown(INSTR)
col1, col2 = st.columns([1, 1])
with col1:
st.markdown("### Record Audio")
with st.container():
audio_bytes = audio_recorder(
text="πŸŽ™οΈ Click to Record",
pause_threshold=3,
icon_size="2x",
key="audio_recorder",
sample_rate=16_000
)
if audio_bytes and audio_bytes != st.session_state.get('last_recorded_audio'):
reset_state()
st.session_state.last_recorded_audio = audio_bytes
st.session_state.audio = {"data":audio_bytes,"format":"audio/wav"}
st.session_state.current_audio_type = "recorded"
st.session_state.has_audio = True
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
tmp_file.write(audio_bytes)
os.makedirs(TEMP_DIR, exist_ok=True)
# s3_client.put_object(Bucket=os.getenv('AWS_BUCKET_NAME'), Key=f"{os.getenv('AUDIOS_KEY')}/{tmp_file.name.split('/')[-1]}", Body=audio_bytes)
st.session_state.audio_path = tmp_file.name
st.session_state.option_selected = None
with col2:
st.markdown("### Random Audio Example")
with st.container():
st.button("🎲 Random Audio",on_click=on_random_click)
if st.session_state.has_audio:
st.audio(**st.session_state.audio)
with st.container():
st.button("πŸ“ Transcribe Audio",on_click=on_click_transcribe,use_container_width=True)
text_containers = st.columns([1, 1])
name_containers = st.columns([1, 1])
with text_containers[0]:
st.text_area("Option 1", value=st.session_state.option_1, height=300)
with text_containers[1]:
st.text_area("Option 2", value=st.session_state.option_2, height=300)
with name_containers[0]:
if st.session_state.option_1_model_name_state:
st.markdown(f"<div style='text-align: center'>{st.session_state.option_1_model_name_state}</div>", unsafe_allow_html=True)
with name_containers[1]:
if st.session_state.option_2_model_name_state:
st.markdown(f"<div style='text-align: center'>{st.session_state.option_2_model_name_state}</div>", unsafe_allow_html=True)
c1, c2, c3, c4 = st.columns(4)
with c1:
st.button("Prefer Option 1",on_click=on_option_1_click)
with c2:
st.button("Prefer Option 2",on_click=on_option_2_click)
with c3:
st.button("Prefer Both",on_click=on_option_both_click)
with c4:
st.button("Prefer None",on_click=on_option_none_click)
create_files()
main()