AdamOswald1 SmilingWolf commited on
Commit
55f8a70
·
0 Parent(s):

Duplicate from SmilingWolf/wd-v1-4-tags

Browse files

Co-authored-by: Smiling Wolf <[email protected]>

Files changed (7) hide show
  1. .gitattributes +27 -0
  2. .gitignore +1 -0
  3. README.md +39 -0
  4. Utils/dbimutils.py +54 -0
  5. app.py +271 -0
  6. power.jpg +0 -0
  7. requirements.txt +5 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ images
README.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: WaifuDiffusion v1.4 Tags
3
+ emoji: 💬
4
+ colorFrom: blue
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 3.16.2
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: SmilingWolf/wd-v1-4-tags
11
+ ---
12
+
13
+ # Configuration
14
+
15
+ `title`: _string_
16
+ Display title for the Space
17
+
18
+ `emoji`: _string_
19
+ Space emoji (emoji-only character allowed)
20
+
21
+ `colorFrom`: _string_
22
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
23
+
24
+ `colorTo`: _string_
25
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
26
+
27
+ `sdk`: _string_
28
+ Can be either `gradio`, `streamlit`, or `static`
29
+
30
+ `sdk_version` : _string_
31
+ Only applicable for `streamlit` SDK.
32
+ See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
33
+
34
+ `app_file`: _string_
35
+ Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code).
36
+ Path is relative to the root of the repository.
37
+
38
+ `pinned`: _boolean_
39
+ Whether the Space stays on top of your list.
Utils/dbimutils.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DanBooru IMage Utility functions
2
+
3
+ import cv2
4
+ import numpy as np
5
+ from PIL import Image
6
+
7
+
8
+ def smart_imread(img, flag=cv2.IMREAD_UNCHANGED):
9
+ if img.endswith(".gif"):
10
+ img = Image.open(img)
11
+ img = img.convert("RGB")
12
+ img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
13
+ else:
14
+ img = cv2.imread(img, flag)
15
+ return img
16
+
17
+
18
+ def smart_24bit(img):
19
+ if img.dtype is np.dtype(np.uint16):
20
+ img = (img / 257).astype(np.uint8)
21
+
22
+ if len(img.shape) == 2:
23
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
24
+ elif img.shape[2] == 4:
25
+ trans_mask = img[:, :, 3] == 0
26
+ img[trans_mask] = [255, 255, 255, 255]
27
+ img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
28
+ return img
29
+
30
+
31
+ def make_square(img, target_size):
32
+ old_size = img.shape[:2]
33
+ desired_size = max(old_size)
34
+ desired_size = max(desired_size, target_size)
35
+
36
+ delta_w = desired_size - old_size[1]
37
+ delta_h = desired_size - old_size[0]
38
+ top, bottom = delta_h // 2, delta_h - (delta_h // 2)
39
+ left, right = delta_w // 2, delta_w - (delta_w // 2)
40
+
41
+ color = [255, 255, 255]
42
+ new_im = cv2.copyMakeBorder(
43
+ img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
44
+ )
45
+ return new_im
46
+
47
+
48
+ def smart_resize(img, size):
49
+ # Assumes the image has already gone through make_square
50
+ if img.shape[0] > size:
51
+ img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
52
+ elif img.shape[0] < size:
53
+ img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
54
+ return img
app.py ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import argparse
4
+ import functools
5
+ import html
6
+ import os
7
+
8
+ import gradio as gr
9
+ import huggingface_hub
10
+ import numpy as np
11
+ import onnxruntime as rt
12
+ import pandas as pd
13
+ import piexif
14
+ import piexif.helper
15
+ import PIL.Image
16
+
17
+ from Utils import dbimutils
18
+
19
+ TITLE = "WaifuDiffusion v1.4 Tags"
20
+ DESCRIPTION = """
21
+ Demo for:
22
+ - [SmilingWolf/wd-v1-4-swinv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2)
23
+ - [SmilingWolf/wd-v1-4-convnext-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2)
24
+ - [SmilingWolf/wd-v1-4-convnextv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnextv2-tagger-v2)
25
+ - [SmilingWolf/wd-v1-4-vit-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-vit-tagger-v2)
26
+
27
+ Includes "ready to copy" prompt and a prompt analyzer.
28
+
29
+ Modified from [NoCrypt/DeepDanbooru_string](https://huggingface.co/spaces/NoCrypt/DeepDanbooru_string)
30
+ Modified from [hysts/DeepDanbooru](https://huggingface.co/spaces/hysts/DeepDanbooru)
31
+
32
+ PNG Info code forked from [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
33
+
34
+ Example image by [ほし☆☆☆](https://www.pixiv.net/en/users/43565085)
35
+ """
36
+
37
+ HF_TOKEN = os.environ["HF_TOKEN"]
38
+ SWIN_MODEL_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
39
+ CONV_MODEL_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
40
+ CONV2_MODEL_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
41
+ VIT_MODEL_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
42
+ MODEL_FILENAME = "model.onnx"
43
+ LABEL_FILENAME = "selected_tags.csv"
44
+
45
+
46
+ def parse_args() -> argparse.Namespace:
47
+ parser = argparse.ArgumentParser()
48
+ parser.add_argument("--score-slider-step", type=float, default=0.05)
49
+ parser.add_argument("--score-general-threshold", type=float, default=0.35)
50
+ parser.add_argument("--score-character-threshold", type=float, default=0.85)
51
+ parser.add_argument("--share", action="store_true")
52
+ return parser.parse_args()
53
+
54
+
55
+ def load_model(model_repo: str, model_filename: str) -> rt.InferenceSession:
56
+ path = huggingface_hub.hf_hub_download(
57
+ model_repo, model_filename, use_auth_token=HF_TOKEN
58
+ )
59
+ model = rt.InferenceSession(path)
60
+ return model
61
+
62
+
63
+ def change_model(model_name):
64
+ global loaded_models
65
+
66
+ if model_name == "SwinV2":
67
+ model = load_model(SWIN_MODEL_REPO, MODEL_FILENAME)
68
+ elif model_name == "ConvNext":
69
+ model = load_model(CONV_MODEL_REPO, MODEL_FILENAME)
70
+ elif model_name == "ConvNextV2":
71
+ model = load_model(CONV2_MODEL_REPO, MODEL_FILENAME)
72
+ elif model_name == "ViT":
73
+ model = load_model(VIT_MODEL_REPO, MODEL_FILENAME)
74
+
75
+ loaded_models[model_name] = model
76
+ return loaded_models[model_name]
77
+
78
+
79
+ def load_labels() -> list[str]:
80
+ path = huggingface_hub.hf_hub_download(
81
+ CONV2_MODEL_REPO, LABEL_FILENAME, use_auth_token=HF_TOKEN
82
+ )
83
+ df = pd.read_csv(path)
84
+
85
+ tag_names = df["name"].tolist()
86
+ rating_indexes = list(np.where(df["category"] == 9)[0])
87
+ general_indexes = list(np.where(df["category"] == 0)[0])
88
+ character_indexes = list(np.where(df["category"] == 4)[0])
89
+ return tag_names, rating_indexes, general_indexes, character_indexes
90
+
91
+
92
+ def plaintext_to_html(text):
93
+ text = (
94
+ "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split("\n")]) + "</p>"
95
+ )
96
+ return text
97
+
98
+
99
+ def predict(
100
+ image: PIL.Image.Image,
101
+ model_name: str,
102
+ general_threshold: float,
103
+ character_threshold: float,
104
+ tag_names: list[str],
105
+ rating_indexes: list[np.int64],
106
+ general_indexes: list[np.int64],
107
+ character_indexes: list[np.int64],
108
+ ):
109
+ global loaded_models
110
+
111
+ rawimage = image
112
+
113
+ model = loaded_models[model_name]
114
+ if model is None:
115
+ model = change_model(model_name)
116
+
117
+ _, height, width, _ = model.get_inputs()[0].shape
118
+
119
+ # Alpha to white
120
+ image = image.convert("RGBA")
121
+ new_image = PIL.Image.new("RGBA", image.size, "WHITE")
122
+ new_image.paste(image, mask=image)
123
+ image = new_image.convert("RGB")
124
+ image = np.asarray(image)
125
+
126
+ # PIL RGB to OpenCV BGR
127
+ image = image[:, :, ::-1]
128
+
129
+ image = dbimutils.make_square(image, height)
130
+ image = dbimutils.smart_resize(image, height)
131
+ image = image.astype(np.float32)
132
+ image = np.expand_dims(image, 0)
133
+
134
+ input_name = model.get_inputs()[0].name
135
+ label_name = model.get_outputs()[0].name
136
+ probs = model.run([label_name], {input_name: image})[0]
137
+
138
+ labels = list(zip(tag_names, probs[0].astype(float)))
139
+
140
+ # First 4 labels are actually ratings: pick one with argmax
141
+ ratings_names = [labels[i] for i in rating_indexes]
142
+ rating = dict(ratings_names)
143
+
144
+ # Then we have general tags: pick any where prediction confidence > threshold
145
+ general_names = [labels[i] for i in general_indexes]
146
+ general_res = [x for x in general_names if x[1] > general_threshold]
147
+ general_res = dict(general_res)
148
+
149
+ # Everything else is characters: pick any where prediction confidence > threshold
150
+ character_names = [labels[i] for i in character_indexes]
151
+ character_res = [x for x in character_names if x[1] > character_threshold]
152
+ character_res = dict(character_res)
153
+
154
+ b = dict(sorted(general_res.items(), key=lambda item: item[1], reverse=True))
155
+ a = (
156
+ ", ".join(list(b.keys()))
157
+ .replace("_", " ")
158
+ .replace("(", "\(")
159
+ .replace(")", "\)")
160
+ )
161
+ c = ", ".join(list(b.keys()))
162
+
163
+ items = rawimage.info
164
+ geninfo = ""
165
+
166
+ if "exif" in rawimage.info:
167
+ exif = piexif.load(rawimage.info["exif"])
168
+ exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b"")
169
+ try:
170
+ exif_comment = piexif.helper.UserComment.load(exif_comment)
171
+ except ValueError:
172
+ exif_comment = exif_comment.decode("utf8", errors="ignore")
173
+
174
+ items["exif comment"] = exif_comment
175
+ geninfo = exif_comment
176
+
177
+ for field in [
178
+ "jfif",
179
+ "jfif_version",
180
+ "jfif_unit",
181
+ "jfif_density",
182
+ "dpi",
183
+ "exif",
184
+ "loop",
185
+ "background",
186
+ "timestamp",
187
+ "duration",
188
+ ]:
189
+ items.pop(field, None)
190
+
191
+ geninfo = items.get("parameters", geninfo)
192
+
193
+ info = f"""
194
+ <p><h4>PNG Info</h4></p>
195
+ """
196
+ for key, text in items.items():
197
+ info += (
198
+ f"""
199
+ <div>
200
+ <p><b>{plaintext_to_html(str(key))}</b></p>
201
+ <p>{plaintext_to_html(str(text))}</p>
202
+ </div>
203
+ """.strip()
204
+ + "\n"
205
+ )
206
+
207
+ if len(info) == 0:
208
+ message = "Nothing found in the image."
209
+ info = f"<div><p>{message}<p></div>"
210
+
211
+ return (a, c, rating, character_res, general_res, info)
212
+
213
+
214
+ def main():
215
+ global loaded_models
216
+ loaded_models = {"SwinV2": None, "ConvNext": None, "ConvNextV2": None, "ViT": None}
217
+
218
+ args = parse_args()
219
+
220
+ change_model("ConvNextV2")
221
+
222
+ tag_names, rating_indexes, general_indexes, character_indexes = load_labels()
223
+
224
+ func = functools.partial(
225
+ predict,
226
+ tag_names=tag_names,
227
+ rating_indexes=rating_indexes,
228
+ general_indexes=general_indexes,
229
+ character_indexes=character_indexes,
230
+ )
231
+
232
+ gr.Interface(
233
+ fn=func,
234
+ inputs=[
235
+ gr.Image(type="pil", label="Input"),
236
+ gr.Radio(["SwinV2", "ConvNext", "ConvNextV2", "ViT"], value="ConvNextV2", label="Model"),
237
+ gr.Slider(
238
+ 0,
239
+ 1,
240
+ step=args.score_slider_step,
241
+ value=args.score_general_threshold,
242
+ label="General Tags Threshold",
243
+ ),
244
+ gr.Slider(
245
+ 0,
246
+ 1,
247
+ step=args.score_slider_step,
248
+ value=args.score_character_threshold,
249
+ label="Character Tags Threshold",
250
+ ),
251
+ ],
252
+ outputs=[
253
+ gr.Textbox(label="Output (string)"),
254
+ gr.Textbox(label="Output (raw string)"),
255
+ gr.Label(label="Rating"),
256
+ gr.Label(label="Output (characters)"),
257
+ gr.Label(label="Output (tags)"),
258
+ gr.HTML(),
259
+ ],
260
+ examples=[["power.jpg", "ConvNextV2", 0.35, 0.85]],
261
+ title=TITLE,
262
+ description=DESCRIPTION,
263
+ allow_flagging="never",
264
+ ).launch(
265
+ enable_queue=True,
266
+ share=args.share,
267
+ )
268
+
269
+
270
+ if __name__ == "__main__":
271
+ main()
power.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ pillow>=9.0.0
2
+ piexif>=1.1.3
3
+ onnxruntime>=1.12.0
4
+ opencv-python
5
+ huggingface-hub