Spaces:
Sleeping
Sleeping
import gradio as gr | |
import jieba | |
import jieba.analyse | |
import aiohttp | |
import asyncio | |
import ssl | |
from aiohttp import ClientSession | |
ssl_context = ssl.create_default_context() | |
ssl_context.check_hostname = False | |
ssl_context.verify_mode = ssl.CERT_NONE | |
def setup_jieba_dictionaries(): | |
dictionaries = [ | |
'flag/RVT_AddressCh.txt', | |
'flag/RVT_AddressEn.txt', | |
'flag/RVT_Area.txt', | |
'flag/RVT_BuildingCh.txt', | |
'flag/RVT_BuildingEn.txt' | |
] | |
for file_path in dictionaries: | |
jieba.load_userdict(file_path) | |
def process_text(text): | |
setup_jieba_dictionaries() | |
user_dict_terms = set() | |
for file_path in [ | |
'flag/RVT_AddressCh.txt', | |
'flag/RVT_AddressEn.txt', | |
'flag/RVT_Area.txt', | |
'flag/RVT_BuildingCh.txt', | |
'flag/RVT_BuildingEn.txt' | |
]: | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
user_dict_terms.update(line.strip().split()[0] for line in f) | |
except FileNotFoundError: | |
print(f'File not found: {file_path}') | |
except Exception as e: | |
print(f'Error reading file {file_path}: {e}') | |
lines = text.splitlines() | |
results = [] | |
for line in lines: | |
line = line.strip() | |
keywords = jieba.analyse.textrank(line, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) | |
keyword_text = ' '.join(keyword for keyword in keywords if keyword in user_dict_terms) | |
results.append(keyword_text) | |
return results | |
def reformat_text(text): | |
lines = text.splitlines() | |
return [line.strip() for line in lines if line.strip()] | |
def process_text_only(text, reformat): | |
extracted_keywords = process_text(text) | |
if reformat: | |
extracted_keywords = reformat_text('\n'.join(extracted_keywords)) | |
# Join keywords with newline characters | |
return '\n'.join(extracted_keywords) | |
async def lookup_address(query, language='zh-Hant'): | |
url = 'https://www.als.gov.hk/lookup' | |
headers = { | |
'Accept': 'application/json', | |
'Accept-Language': language | |
} | |
payload = { | |
'q': query | |
} | |
async with ClientSession() as session: | |
try: | |
async with session.post(url, headers=headers, data=payload, ssl=ssl_context) as response: | |
if response.status == 200: | |
return await response.json() | |
else: | |
print(f'Error fetching data: Status Code {response.status}') | |
return {'error': f'Error fetching data: Status Code {response.status}'} | |
except aiohttp.ClientError as e: | |
print(f'Client Error: {e}') | |
return {'error': f'Client Error: {e}'} | |
except Exception as e: | |
print(f'General Error: {e}') | |
return {'error': f'General Error: {e}'} | |
async def get_address_lookup_results(keywords): | |
results = [] | |
for keyword in keywords: | |
keyword = keyword.strip() | |
if not keyword: # Skip empty keywords | |
continue | |
lookup_results = await lookup_address(keyword) | |
if 'SuggestedAddress' in lookup_results and isinstance(lookup_results['SuggestedAddress'], list): | |
first_match = lookup_results['SuggestedAddress'][0] # Use the first match | |
full_address = 'No matches found' | |
geo_address = 'N/A' | |
latitude = 'N/A' | |
longitude = 'N/A' | |
matched_building = 'No Building Name' | |
if first_match: | |
premises_address = first_match['Address']['PremisesAddress'] | |
raw_address = premises_address.get('ChiPremisesAddress', {}) | |
matched_building = raw_address.get('BuildingName', 'No Building Name') | |
full_address = matched_building | |
geo_address = premises_address.get('GeoAddress', 'N/A') | |
geo_info = premises_address.get('GeospatialInformation', {}) | |
latitude = geo_info.get('Latitude', 'N/A') | |
longitude = geo_info.get('Longitude', 'N/A') | |
results.append({ | |
'Keyword': keyword, | |
'Full Address': full_address, | |
'Geo Address': geo_address, | |
'Latitude': latitude, | |
'Longitude': longitude | |
}) | |
else: | |
results.append({ | |
'Keyword': keyword, | |
'Full Address': 'No matches found', | |
'Geo Address': 'N/A', | |
'Latitude': 'N/A', | |
'Longitude': 'N/A' | |
}) | |
return results | |
async def gradio_function(text, reformat, perform_lookup): | |
extracted_keywords = process_text_only(text, reformat) | |
keywords_list = extracted_keywords.splitlines() | |
address_results = [] | |
if perform_lookup: | |
address_results = await get_address_lookup_results(keywords_list) | |
return extracted_keywords, address_results | |
def gradio_interface(text, reformat, perform_lookup): | |
return asyncio.run(gradio_function(text, reformat, perform_lookup)) | |
interface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Textbox(lines=20, placeholder="Paste text here, each line will be processed separately..."), | |
gr.Checkbox(label="Reformat text (remove empty lines)"), | |
gr.Checkbox(label="Perform Address Lookup") | |
], | |
outputs=[ | |
gr.Textbox(label="Extracted Address Keywords"), | |
gr.JSON(label="Address Lookup Results") | |
], | |
title="Address Extraction and Lookup with Natural Language Processing", | |
description="Extract address keywords using NLP and optionally perform address lookup using ALS." | |
) | |
interface.launch() | |