Spaces:
Sleeping
Sleeping
import gradio as gr | |
import jieba | |
import jieba.analyse | |
import aiohttp | |
import asyncio | |
import ssl | |
from functools import lru_cache | |
# SSL context setup | |
ssl_context = ssl.create_default_context() | |
ssl_context.check_hostname = False | |
ssl_context.verify_mode = ssl.CERT_NONE | |
area_data = { | |
'香港': { | |
'中西區': ["西環", "堅尼地城", "石塘咀", "西營盤", "上環", "中環", "金鐘", "西半山", "中半山", "半山", "山頂"], | |
'灣仔': ["灣仔", "銅鑼灣", "跑馬地", "大坑", "掃桿埔", "渣甸山"], | |
'東區': ["天后", "寶馬山", "北角", "鰂魚涌", "西灣河", "筲箕灣", "柴灣", "小西灣"], | |
'南區': ["薄扶林", "香港仔", "鴨脷洲", "黃竹坑", "壽臣山", "淺水灣", "舂磡角", "赤柱", "大潭", "石澳", "田灣"] | |
}, | |
'九龍': { | |
'油尖旺': ["尖沙咀", "油麻地", "西九龍", "京士柏", "旺角", "大角咀", "佐敦", "太子"], | |
'深水埗': ["美孚", "荔枝角", "長沙灣", "深水埗", "石硤尾", "又一村", "大窩坪", "昂船洲"], | |
'九龍城': ["紅磡", "土瓜灣", "馬頭角", "馬頭圍", "啟德", "九龍城", "何文田", "九龍塘", "筆架山"], | |
'黃大仙': ["新蒲崗", "黃大仙", "東頭", "橫頭磡", "樂富", "鑽石山", "慈雲山", "牛池灣"], | |
'觀塘': ["坪石", "九龍灣", "牛頭角", "佐敦谷", "觀塘", "秀茂坪", "藍田", "油塘", "鯉魚門"] | |
}, | |
'新界': { | |
'葵青': ["葵涌", "青衣", "葵芳"], | |
'荃灣': ["荃灣", "梨木樹", "汀九", "深井", "青龍頭", "馬灣", "欣澳"], | |
'屯門': ["大欖涌", "掃管笏", "屯門", "藍地"], | |
'元朗': ["洪水橋", "廈村", "流浮山", "天水圍", "元朗", "新田", "落馬洲", "錦田", "石崗", "八鄉"], | |
'北區': ["粉嶺", "聯和墟", "上水", "石湖墟", "沙頭角", "鹿頸", "烏蛟騰"], | |
'大埔': ["大埔墟", "大埔", "大埔滘", "大尾篤", "船灣", "樟木頭", "企嶺下", "太和"], | |
'沙田': ["大圍", "沙田", "火炭", "馬料水", "烏溪沙", "馬鞍山"], | |
'西貢': ["清水灣", "西貢", "大網仔", "將軍澳", "坑口", "調景嶺", "馬游塘"], | |
'離島': ["長洲", "坪洲", "大嶼山", "東涌", "南丫島"] | |
} | |
} | |
def load_user_dict_terms(): | |
user_dict_terms = set() | |
dictionaries = [ | |
'flag/RVT_AddressCh.txt', 'flag/RVT_AddressEn.txt', 'flag/RVT_Area.txt', | |
'flag/RVT_BuildingCh.txt', 'flag/RVT_BuildingEn.txt', 'flag/ChiVillage.txt', | |
'flag/ChiEstate.txt', 'flag/ChiStreet.txt', 'flag/ChiBuilding.txt' | |
] | |
for file_path in dictionaries: | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
user_dict_terms.update(line.strip().split()[0] for line in f) | |
except FileNotFoundError: | |
print(f'File not found: {file_path}') | |
except Exception as e: | |
print(f'Error reading file {file_path}: {e}') | |
return user_dict_terms | |
def setup_jieba_dictionaries(): | |
dictionaries = [ | |
'flag/RVT_AddressCh.txt', 'flag/RVT_AddressEn.txt', 'flag/RVT_Area.txt', | |
'flag/RVT_BuildingCh.txt', 'flag/RVT_BuildingEn.txt', 'flag/ChiVillage.txt', | |
'flag/ChiEstate.txt', 'flag/ChiStreet.txt', 'flag/ChiBuilding.txt' | |
] | |
for file_path in dictionaries: | |
jieba.load_userdict(file_path) | |
def process_text(text): | |
setup_jieba_dictionaries() | |
user_dict_terms = load_user_dict_terms() | |
lines = text.splitlines() | |
results = [] | |
for line in lines: | |
line = line.strip() | |
keywords = jieba.analyse.textrank(line, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) | |
keyword_text = ' '.join(keyword for keyword in keywords if keyword in user_dict_terms) | |
results.append(keyword_text) | |
return results | |
def reformat_text(text): | |
return [line.strip() for line in text.splitlines() if line.strip()] | |
def process_text_only(text, reformat): | |
extracted_keywords = process_text(text) | |
if reformat: | |
extracted_keywords = reformat_text('\n'.join(extracted_keywords)) | |
return '\n'.join(extracted_keywords) | |
async def lookup_address(query, language='zh-Hant'): | |
url = 'https://www.als.gov.hk/lookup' | |
headers = {'Accept': 'application/json', 'Accept-Language': language} | |
payload = {'q': query} | |
async with aiohttp.ClientSession() as session: | |
try: | |
async with session.post(url, headers=headers, data=payload, ssl=ssl_context) as response: | |
if response.status == 200: | |
return await response.json() | |
else: | |
print(f'Error fetching data: Status Code {response.status}') | |
return {'error': f'Error fetching data: Status Code {response.status}'} | |
except aiohttp.ClientError as e: | |
print(f'Client Error: {e}') | |
return {'error': f'Client Error: {e}'} | |
except Exception as e: | |
print(f'General Error: {e}') | |
return {'error': f'General Error: {e}'} | |
async def get_address_lookup_results(keywords): | |
results = [] | |
tasks = [lookup_address(keyword.strip()) for keyword in keywords if | |
keyword.strip() and is_valid_for_lookup(keyword.strip())] | |
lookup_results = await asyncio.gather(*tasks) | |
for keyword, lookup_result in zip(keywords, lookup_results): | |
if 'SuggestedAddress' in lookup_result and isinstance(lookup_result['SuggestedAddress'], list): | |
first_match = lookup_result['SuggestedAddress'][0] | |
result = {'Keyword': keyword} | |
if first_match: | |
premises_address = first_match['Address']['PremisesAddress'] | |
raw_address = premises_address.get('ChiPremisesAddress', {}) | |
matched_building = raw_address.get('BuildingName', 'No Building Name') | |
if matched_building != 'No Building Name': | |
result['Full Address'] = matched_building | |
geo_address = premises_address.get('GeoAddress') | |
if geo_address and geo_address != 'N/A': | |
result['Geo Address'] = geo_address | |
geo_info = premises_address.get('GeospatialInformation', {}) | |
latitude = geo_info.get('Latitude') | |
longitude = geo_info.get('Longitude') | |
if latitude and latitude != 'N/A': | |
result['Latitude'] = latitude | |
if longitude and longitude != 'N/A': | |
result['Longitude'] = longitude | |
if len(result) > 1: # Only add if there's more than just the Keyword | |
results.append(result) | |
return results | |
def is_valid_for_lookup(keyword): | |
return not any(keyword in districts.keys() or keyword in subdistrict | |
for districts in area_data.values() | |
for subdistrict in districts.values()) | |
async def gradio_function(text, reformat, perform_lookup): | |
extracted_keywords = process_text_only(text, reformat) | |
keywords_list = extracted_keywords.splitlines() | |
address_results = [] | |
if perform_lookup: | |
address_results = await get_address_lookup_results(keywords_list) | |
return extracted_keywords, address_results | |
def gradio_interface(text, reformat, perform_lookup): | |
return asyncio.run(gradio_function(text, reformat, perform_lookup)) | |
interface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Textbox(lines=20, placeholder="Paste text here, each line will be processed separately..."), | |
gr.Checkbox(label="Reformat text (remove empty lines)"), | |
gr.Checkbox(label="Perform Address Lookup") | |
], | |
outputs=[ | |
gr.Textbox(label="Extracted Address Keywords"), | |
gr.JSON(label="Address Lookup Results") | |
], | |
title="Address Extraction and Lookup with Natural Language Processing", | |
description="Extract address keywords using NLP and optionally perform address lookup using ALS." | |
) | |
interface.launch() |