Spaces:
Build error
Build error
from fake_face_detection.utils.generation import PI_generate_sample as generate_sample | |
from fake_face_detection.utils.acquisitions import PI_acquisition as acquisition | |
from fake_face_detection.utils.sampling import get_random_samples | |
from sklearn.gaussian_process import GaussianProcessRegressor | |
from functools import partial | |
from typing import * | |
import pandas as pd | |
import numpy as np | |
import string | |
import random | |
import pickle | |
import os | |
letters = string.ascii_letters + string.digits | |
class SimpleBayesianOptimizationForFakeReal: | |
def __init__(self, objective: Callable, search_spaces: dict, maximize: bool = True, random_kwargs: dict = {}, kwargs: dict = {}, checkpoint: str = "data/trials/checkpoint.txt"): | |
# recuperate the optimization strategy | |
self.maximize = maximize | |
# checkpoint where the data and score will be saved | |
self.checkpoint = checkpoint | |
# initialize the search spaces | |
self.search_spaces = search_spaces | |
# recuperate the random kwargs | |
self.random_kwargs = random_kwargs | |
# initialize the objective function | |
self.objective = objective | |
# initialize the kwargs | |
self.kwargs = kwargs | |
# initialize the model | |
self.model = GaussianProcessRegressor() | |
# initialize the random kwargs with a random values | |
random_kwargs = {key: value + ''.join(random.choice(letters) for i in range(7)) for key, value in self.random_kwargs.items()} | |
# add random kwargs to the kwargs | |
self.kwargs.update(random_kwargs) | |
# recuperate random sample | |
config = get_random_samples(search_spaces) | |
if os.path.exists(self.checkpoint): | |
with open(self.checkpoint, 'rb') as f: | |
pickler = pickle.Unpickler(f) | |
checkpoint = pickler.load() | |
self.data = checkpoint['data'] | |
self.scores = checkpoint['scores'] | |
self.model = checkpoint['model'] | |
self.current_trial = checkpoint['trial'] | |
print(f"Checkpoint loaded at trial {self.current_trial}") | |
else: | |
# add config to kwargs | |
self.kwargs['config'] = config | |
# calculate the first score | |
score = self.objective(**self.kwargs) | |
# initialize the input data | |
self.data = [list(config.values())] | |
# initialize the scores | |
self.scores = [[score]] | |
# fit the model with the input data and the target | |
self.model.fit(self.data, self.scores) | |
# initialize the number of trials to zero | |
self.current_trial = 0 | |
with open(self.checkpoint, 'wb') as f: | |
pickler = pickle.Pickler(f) | |
checkpoint = { | |
'data': self.data, | |
'scores': self.scores, | |
'model': self.model, | |
'trial': self.current_trial | |
} | |
pickler.dump(checkpoint) | |
def optimize(self, n_trials: int = 50, n_tests: int = 100): | |
"""Finding the best hyperparameters with the Bayesian Optimization | |
Args: | |
n_trials (int, optional): The number of trials. Defaults to 50. | |
n_tests (int, optional): The number of random samples to test for each trial. Defaults to 100. | |
""" | |
# let us make multiple trials in order to find the best params | |
for trial in range(self.current_trial + 1, self.current_trial + n_trials + 1): | |
# let us generate new samples with the acquisition and the surrogate functions | |
new_sample = generate_sample(self.data, self.model, self.search_spaces, n_tests, maximize = self.maximize) | |
config = {key: new_sample[i] for i, key in enumerate(self.search_spaces)} | |
# recuperate a new score | |
new_score = self.get_score(config) | |
# let us add the new sample, target and score to their lists | |
self.data.append(new_sample) | |
self.scores.append([new_score]) | |
# let us train again the model | |
self.model.fit(self.data, self.scores) | |
# recuperate the current trial | |
self.current_trial = trial | |
with open(self.checkpoint, 'wb') as f: | |
pickler = pickle.Pickler(f) | |
checkpoint = { | |
'data': self.data, | |
'scores': self.scores, | |
'model': self.model, | |
'trial': self.current_trial | |
} | |
pickler.dump(checkpoint) | |
def get_score(self, config: dict): | |
# add random seed (since we have always the same problem of randomizing the seed) | |
random.seed(None) | |
# initialize the random kwargs with a random values | |
random_kwargs = {key: value + ''.join(random.choice(letters) for i in range(7)) for key, value in self.random_kwargs.items()} | |
print(random_kwargs) | |
# add random kwargs to the kwargs | |
self.kwargs.update(random_kwargs) | |
# add config to kwargs | |
self.kwargs['config'] = config | |
# calculate the first score | |
new_score = self.objective(**self.kwargs) | |
return new_score | |
def get_results(self): | |
"""Recuperate the generated samples and the scores | |
Returns: | |
pd.DataFrame: A data frame containing the results | |
""" | |
# let us return the results as a data frame | |
data = {key: np.array(self.data, dtype = object)[:, i] for i, key in enumerate(self.search_spaces)} | |
data.update({'score': np.array(self.scores)[:, 0]}) | |
return pd.DataFrame(data) | |