from fake_face_detection.utils.generation import PI_generate_sample as generate_sample from fake_face_detection.utils.acquisitions import PI_acquisition as acquisition from fake_face_detection.utils.sampling import get_random_samples from sklearn.gaussian_process import GaussianProcessRegressor from typing import * import pandas as pd import numpy as np class SimpleBayesianOptimization: def __init__(self, objective: Callable, search_spaces: dict, maximize: bool = True): # recuperate the optimization strategy self.maximize = maximize # recuperate random sample sample = get_random_samples(search_spaces) # initialize the search spaces self.search_spaces = search_spaces # initialize the objective function self.objective = objective # calculate the first score score = objective(sample) # initialize the model self.model = GaussianProcessRegressor() # initialize the input data self.data = [list(sample.values())] # initialize the scores self.scores = [[score]] # fit the model with the input data and the target self.model.fit(self.data, self.scores) def optimize(self, n_trials: int = 50, n_tests: int = 100): """Finding the best hyperparameters with the Bayesian Optimization Args: n_trials (int, optional): The number of trials. Defaults to 50. n_tests (int, optional): The number of random samples to test for each trial. Defaults to 100. """ # let us make multiple trials in order to find the best params for _ in range(n_trials): # let us generate new samples with the acquisition and the surrogate functions new_sample = generate_sample(self.data, self.model, self.search_spaces, n_tests, maximize = self.maximize) sample = {key: new_sample[i] for i, key in enumerate(self.search_spaces)} # let us recuperate a new score from the new sample new_score = self.objective(sample) # let us add the new sample, target and score to their lists self.data.append(new_sample) self.scores.append([new_score]) # let us train again the model self.model.fit(self.data, self.scores) def get_results(self): """Recuperate the generated samples and the scores Returns: pd.DataFrame: A data frame containing the results """ # let us return the results as a data frame data = {key: np.array(self.data, dtype = object)[:, i] for i, key in enumerate(self.search_spaces)} data.update({'score': np.array(self.scores)[:, 0]}) return pd.DataFrame(data)