File size: 25,952 Bytes
9b14109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c8541
9b14109
 
 
 
 
 
2cb4802
9b14109
 
 
 
2cb4802
9b14109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cb4802
9b14109
 
 
 
 
df1b485
9b14109
 
 
 
 
 
 
8bda43d
9b14109
 
 
 
 
 
 
 
 
 
8bda43d
 
9b14109
30bb00b
9b14109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c8541
9b14109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "MongoDB Cluster management\n",
    "-----------------------\n",
    "\n",
    "Let us create some function to send (insert documents) and retrieve collections from our cluster database."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We must import the pymongo the client and the server modules."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 101,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pymongo.mongo_client import MongoClient\n",
    "from pymongo.server_api import ServerApi\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 102,
   "metadata": {},
   "outputs": [],
   "source": [
    "# let us set below the cluster uri\n",
    "uri = \"mongodb+srv://oumar199:[email protected]/?retryWrites=true&w=majority\""
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Inserting new documents"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let us insert new documents to our collection."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 103,
   "metadata": {},
   "outputs": [],
   "source": [
    "# we must initialize the client\n",
    "client = MongoClient(uri, server_api = ServerApi('1'))"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let us create a new collection."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 104,
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a database\n",
    "db = client.get_database('WolofTranslation')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 105,
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a new collection for the new sentences\n",
    "sentences = db.sentences"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It is time to insert the new documents."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 106,
   "metadata": {},
   "outputs": [],
   "source": [
    "# recuperate the already created sentences\n",
    "corpora = pd.read_csv('wolof-translate/wolof_translate/data/sentences/wolof_french.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 107,
   "metadata": {},
   "outputs": [],
   "source": [
    "# let us reset the indices\n",
    "corpora.reset_index(inplace=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 108,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>index</th>\n",
       "      <th>french</th>\n",
       "      <th>wolof</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>J'arrive tout de suite chez toi.</td>\n",
       "      <td>Léegui léegui ma egg sa kër.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>J'en suis sûr, cette photo ci c'est la photo p...</td>\n",
       "      <td>Waaw nataal bii nataal la boob ay nit ñu baree...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2</td>\n",
       "      <td>Je vois devant moi une photo sur laquelle beau...</td>\n",
       "      <td>Nataal bii maa ngi ciy janloog haa ay nit yu b...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3</td>\n",
       "      <td>Ceux-ci sont des personnes qui sont sortis pou...</td>\n",
       "      <td>Lii, ay nit lañu yu génn di ñaxtu. Jëm yi nag ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>4</td>\n",
       "      <td>Salut ! Ceux-là qui ressemblent à des personne...</td>\n",
       "      <td>Salaawaalekum ! Ñii de, mel nañ ne, ay nit ñu ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>5</td>\n",
       "      <td>Cette photo ci c'est une photo sur laquelle je...</td>\n",
       "      <td>Nataal bi ab nataal la boo xamante yni maa ngi...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>6</td>\n",
       "      <td>Sur la photo, ont voit des personnes qui se ré...</td>\n",
       "      <td>Nataal bii ñoo ngi ciy gis ay nit ñuy ñaxtu wa...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>7</td>\n",
       "      <td>On voit sur la photo beaucoup de personnes sor...</td>\n",
       "      <td>Ñu gis ci nataal bi ay nit ñu bari ñu génn ci ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>8</td>\n",
       "      <td>C'est des poissons, oui. Ils sont de couleur b...</td>\n",
       "      <td>Jën la waaw, Wu am wirgo Wu baxa ak Wu xonq.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>9</td>\n",
       "      <td>Ah sur cette photo ci cependant, il y a un poi...</td>\n",
       "      <td>Aah nataal bii nag, aw jën la. Jën wi mi ngi a...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   index                                             french  \\\n",
       "0      0                   J'arrive tout de suite chez toi.   \n",
       "1      1  J'en suis sûr, cette photo ci c'est la photo p...   \n",
       "2      2  Je vois devant moi une photo sur laquelle beau...   \n",
       "3      3  Ceux-ci sont des personnes qui sont sortis pou...   \n",
       "4      4  Salut ! Ceux-là qui ressemblent à des personne...   \n",
       "5      5  Cette photo ci c'est une photo sur laquelle je...   \n",
       "6      6  Sur la photo, ont voit des personnes qui se ré...   \n",
       "7      7  On voit sur la photo beaucoup de personnes sor...   \n",
       "8      8  C'est des poissons, oui. Ils sont de couleur b...   \n",
       "9      9  Ah sur cette photo ci cependant, il y a un poi...   \n",
       "\n",
       "                                               wolof  \n",
       "0                       Léegui léegui ma egg sa kër.  \n",
       "1  Waaw nataal bii nataal la boob ay nit ñu baree...  \n",
       "2  Nataal bii maa ngi ciy janloog haa ay nit yu b...  \n",
       "3  Lii, ay nit lañu yu génn di ñaxtu. Jëm yi nag ...  \n",
       "4  Salaawaalekum ! Ñii de, mel nañ ne, ay nit ñu ...  \n",
       "5  Nataal bi ab nataal la boo xamante yni maa ngi...  \n",
       "6  Nataal bii ñoo ngi ciy gis ay nit ñuy ñaxtu wa...  \n",
       "7  Ñu gis ci nataal bi ay nit ñu bari ñu génn ci ...  \n",
       "8       Jën la waaw, Wu am wirgo Wu baxa ak Wu xonq.  \n",
       "9  Aah nataal bii nag, aw jën la. Jën wi mi ngi a...  "
      ]
     },
     "execution_count": 108,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "corpora.head(10)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 109,
   "metadata": {},
   "outputs": [],
   "source": [
    "# insert the sentences\n",
    "results = sentences.insert_many({\n",
    "        '_id': corp, # set the id\n",
    "        'french': corpora.loc[corp, 'french'],\n",
    "        'wolof': corpora.loc[corp, 'wolof']\n",
    "    } for corp in corpora.index\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let us insert the deleted sentences."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 110,
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a new collection named deleted.\n",
    "deleted = db.deleted"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 111,
   "metadata": {},
   "outputs": [],
   "source": [
    "# recuperated the data frame of deleted sentences\n",
    "del_corpora = pd.read_csv('wolof-translate/wolof_translate/data/sentences/deleted_lines.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 112,
   "metadata": {},
   "outputs": [],
   "source": [
    "# reset the indices\n",
    "del_corpora.reset_index(inplace=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 113,
   "metadata": {},
   "outputs": [],
   "source": [
    "# insert the deleted sentences\n",
    "results = deleted.insert_many({\n",
    "        '_id': corp, # set the id\n",
    "        'french': corpora.loc[corp, 'french'],\n",
    "        'wolof': corpora.loc[corp, 'wolof']\n",
    "    } for corp in del_corpora.index\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Modify sentences"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We want to modify only one sentence at a time."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 114,
   "metadata": {},
   "outputs": [],
   "source": [
    "# select the id to modify\n",
    "id_ = 1\n",
    "\n",
    "# retrieve new sentences\n",
    "french = corpora.loc[id_, 'french']\n",
    "wolof = corpora.loc[id_, 'wolof']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 115,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(\"J'en suis sûr, cette photo ci c'est la photo pris au moment où plusieurs personnes font une marche de révolte tendant leurs mains. Ceux là sont assis, ceux là sont debout entrain de marcher. On a écrit sur la photo quelque chose de bleu concernant la Casamance.\",\n",
       " 'Waaw nataal bii nataal la boob ay nit ñu baree bari ñoo xam ni dañuy doxub ñaxtu ñoo ci nekk tàllal seen i loxo. Ñee sukku ñeel taxaw jodd di dox. Ñu bind ci kaw nataal bi lu xaw a baxa la bind ci laa kaasamãs.')"
      ]
     },
     "execution_count": 115,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# print the sentences\n",
    "french, wolof"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 118,
   "metadata": {},
   "outputs": [],
   "source": [
    "# modify the sentences at the id\n",
    "results = sentences.update_one(\n",
    "    {\n",
    "        '_id': {'$eq': id_}\n",
    "    },\n",
    "    {\n",
    "        '$set': {\n",
    "            'french': french,\n",
    "            'wolof': wolof + \"--------\" # we added a modification\n",
    "        }\n",
    "    }\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let us show the first documents."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 119,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>_id</th>\n",
       "      <th>french</th>\n",
       "      <th>wolof</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>J'arrive tout de suite chez toi.</td>\n",
       "      <td>Léegui léegui ma egg sa kër.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>J'en suis sûr, cette photo ci c'est la photo p...</td>\n",
       "      <td>Waaw nataal bii nataal la boob ay nit ñu baree...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2</td>\n",
       "      <td>Je vois devant moi une photo sur laquelle beau...</td>\n",
       "      <td>Nataal bii maa ngi ciy janloog haa ay nit yu b...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3</td>\n",
       "      <td>Ceux-ci sont des personnes qui sont sortis pou...</td>\n",
       "      <td>Lii, ay nit lañu yu génn di ñaxtu. Jëm yi nag ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>4</td>\n",
       "      <td>Salut ! Ceux-là qui ressemblent à des personne...</td>\n",
       "      <td>Salaawaalekum ! Ñii de, mel nañ ne, ay nit ñu ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>5</td>\n",
       "      <td>Cette photo ci c'est une photo sur laquelle je...</td>\n",
       "      <td>Nataal bi ab nataal la boo xamante yni maa ngi...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>6</td>\n",
       "      <td>Sur la photo, ont voit des personnes qui se ré...</td>\n",
       "      <td>Nataal bii ñoo ngi ciy gis ay nit ñuy ñaxtu wa...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>7</td>\n",
       "      <td>On voit sur la photo beaucoup de personnes sor...</td>\n",
       "      <td>Ñu gis ci nataal bi ay nit ñu bari ñu génn ci ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>8</td>\n",
       "      <td>C'est des poissons, oui. Ils sont de couleur b...</td>\n",
       "      <td>Jën la waaw, Wu am wirgo Wu baxa ak Wu xonq.</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>9</td>\n",
       "      <td>Ah sur cette photo ci cependant, il y a un poi...</td>\n",
       "      <td>Aah nataal bii nag, aw jën la. Jën wi mi ngi a...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   _id                                             french  \\\n",
       "0    0                   J'arrive tout de suite chez toi.   \n",
       "1    1  J'en suis sûr, cette photo ci c'est la photo p...   \n",
       "2    2  Je vois devant moi une photo sur laquelle beau...   \n",
       "3    3  Ceux-ci sont des personnes qui sont sortis pou...   \n",
       "4    4  Salut ! Ceux-là qui ressemblent à des personne...   \n",
       "5    5  Cette photo ci c'est une photo sur laquelle je...   \n",
       "6    6  Sur la photo, ont voit des personnes qui se ré...   \n",
       "7    7  On voit sur la photo beaucoup de personnes sor...   \n",
       "8    8  C'est des poissons, oui. Ils sont de couleur b...   \n",
       "9    9  Ah sur cette photo ci cependant, il y a un poi...   \n",
       "\n",
       "                                               wolof  \n",
       "0                       Léegui léegui ma egg sa kër.  \n",
       "1  Waaw nataal bii nataal la boob ay nit ñu baree...  \n",
       "2  Nataal bii maa ngi ciy janloog haa ay nit yu b...  \n",
       "3  Lii, ay nit lañu yu génn di ñaxtu. Jëm yi nag ...  \n",
       "4  Salaawaalekum ! Ñii de, mel nañ ne, ay nit ñu ...  \n",
       "5  Nataal bi ab nataal la boo xamante yni maa ngi...  \n",
       "6  Nataal bii ñoo ngi ciy gis ay nit ñuy ñaxtu wa...  \n",
       "7  Ñu gis ci nataal bi ay nit ñu bari ñu génn ci ...  \n",
       "8       Jën la waaw, Wu am wirgo Wu baxa ak Wu xonq.  \n",
       "9  Aah nataal bii nag, aw jën la. Jën wi mi ngi a...  "
      ]
     },
     "execution_count": 119,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# get the 10 first sentences into a Data Frame\n",
    "pd.DataFrame(list(sentences.find().limit(10)))"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Delete sentences"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We want to modify only one sentence at a time. The deleted sentences must be added into the 'deleted' collection. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# recuperate the sentences to delete (id = 0)\n",
    "id_ = 0\n",
    "\n",
    "del_sent = sentences.find_one(\n",
    "    {\n",
    "        '_id': {'$eq': id_}\n",
    "    }    \n",
    ")\n",
    "\n",
    "# delete the sentence and add it into the deleted sentences\n",
    "sentences.delete_one(\n",
    "    {\n",
    "        '_id': {'$eq': del_sent['_id']}\n",
    "    }\n",
    ")\n",
    "\n",
    "results = deleted.insert_one(\n",
    "    {\n",
    "        '_id': len(list(deleted.find())),\n",
    "        'french': del_sent['french'],\n",
    "        'wolof': del_sent['wolof']\n",
    "    }\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### From collection to DataFrame"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We must convert the sentences to csv files in order to use at the training step."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 123,
   "metadata": {},
   "outputs": [],
   "source": [
    "# recuperate the new corpora\n",
    "new_corpora = pd.DataFrame(list(sentences.find()))\n",
    "\n",
    "# recuperate the deleted sentences as a Data Frame\n",
    "deleted_df = pd.DataFrame(list(deleted.find()))\n",
    "\n",
    "# save the data frames as csv files\n",
    "new_corpora.set_index('_id', inplace=True)\n",
    "\n",
    "deleted_df.set_index('_id', inplace=True)\n",
    "\n",
    "new_corpora.to_csv('wolof-translate/wolof_translate/data/sentences/wolof_french.csv', index=False)\n",
    "\n",
    "deleted_df.to_csv('wolof-translate/wolof_translate/data/sentences/deleted_lines.csv', index=False)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### All in one"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let us create a class which consider each of the methods we investigated previously."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 129,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'_id': 150,\n",
       " 'french': \"Sur la photo que vous m'avez envoyée, j'ai vu qu'il s'agissait de gendarmes. Des gendarmes qui portent, cependant, des... des boucliers. Des verres conçus pour les protéger. Ils sont faces au peuple s'échangeant contre eux des cailloux et des pierres.\",\n",
       " 'wolof': 'Nataal bi ngeen ma yonnee, gis naa ni ay takk-der la. Takk der yoo xamantane bii nag, jël nañ loo xamantane bii mooy ay,... Ay baar. Ay verre yoo xam ne  dañ kaa defar pour ñu leen di baare, ñu jàkkarlook askan wi di sànnanteek ñoom ay xeer ak ay doj.'}"
      ]
     },
     "execution_count": 129,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "list(sentences.find().sort('_id', -1).limit(1))[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Overwriting wolof_translate/utils/database_manager.py\n"
     ]
    }
   ],
   "source": [
    "%%writefile wolof_translate/utils/database_manager.py\n",
    "from pymongo.mongo_client import MongoClient\n",
    "from pymongo.server_api import ServerApi\n",
    "import pandas as pd\n",
    "\n",
    "class TranslationMongoDBManager:\n",
    "    \n",
    "    def __init__(self, uri: str, database: str):\n",
    "        \n",
    "        # recuperate the client\n",
    "        self.client = MongoClient(uri)\n",
    "        \n",
    "        # recuperate the database\n",
    "        self.db = self.client.get_database(database)\n",
    "        \n",
    "    def insert_documents(self, documents: list, collection: str = \"sentences\"):\n",
    "        \n",
    "        # insert documents inside a collection\n",
    "        results = self.db[collection].insert_many(documents)\n",
    "        \n",
    "        return results\n",
    "    \n",
    "    def insert_document(self, document: dict, collection: str = \"sentences\"):\n",
    "        \n",
    "        assert not '_id' in document\n",
    "        \n",
    "        # get the id of the last sentence (recuperate the max id and add 1 to it)\n",
    "        max_id = self.get_max_id(collection)\n",
    "        \n",
    "        # add the new sentences\n",
    "        document['_id'] = max_id + 1\n",
    "        \n",
    "        results = self.db[collection].insert_one(\n",
    "            document\n",
    "        )\n",
    "        \n",
    "        return results\n",
    "    \n",
    "    def update_document(self, id: int, collection: str = \"sentences\", update_collection: str = \"updated\"):\n",
    "        \n",
    "        # recuperate the document to update\n",
    "        upd_sent = self.db[collection].find_one(\n",
    "            {\n",
    "                '_id': {\n",
    "                    '$eq': id\n",
    "                }\n",
    "            }\n",
    "        )\n",
    "        \n",
    "        # delete the document\n",
    "        self.db[collection].delete_one(\n",
    "            {\n",
    "                '_id': {'$eq': upd_sent['_id']}\n",
    "            }\n",
    "        )\n",
    "        \n",
    "        # add the sentences to the deleted sentences\n",
    "        upd_sent['_id'] = len(list(self.db[update_collection].find()))\n",
    "        \n",
    "        results = self.db[update_collection].insert_one(\n",
    "            upd_sent\n",
    "        )\n",
    "        \n",
    "        return results\n",
    "    \n",
    "    def delete_document(self, id: int, collection: str = \"sentences\", del_collection: str = \"deleted\"):\n",
    "        \n",
    "        # recuperate the document to delete\n",
    "        del_sent = self.db[collection].find_one(\n",
    "            {\n",
    "                '_id': {\n",
    "                    '$eq': id\n",
    "                }\n",
    "            }\n",
    "        )\n",
    "        \n",
    "        # delete the sentence\n",
    "        self.db[collection].delete_one(\n",
    "            {\n",
    "                '_id': {'$eq': del_sent['_id']}\n",
    "            }\n",
    "        )\n",
    "        \n",
    "        # add the sentences to the deleted sentences\n",
    "        del_sent['_id'] = len(list(self.db[del_collection].find()))\n",
    "        \n",
    "        results = self.db[del_collection].insert_one(\n",
    "            del_sent\n",
    "        )\n",
    "        \n",
    "        return results\n",
    "    \n",
    "    def get_max_id(self, collection: str = \"sentences\"):\n",
    "        \n",
    "        # recuperate the maximum id\n",
    "        id = list(self.db[collection].find().sort('_id', -1).limit(1))[0]['_id']\n",
    "        \n",
    "        return id\n",
    "    \n",
    "    def save_data_frames(self, sentences_path: str, deleted_path: str, collection: str = \"sentences\", del_collection: str = \"deleted\"):\n",
    "        \n",
    "        # recuperate the new corpora\n",
    "        new_corpora = pd.DataFrame(list(self.db[collection].find()))\n",
    "\n",
    "        # recuperate the deleted sentences as a Data Frame\n",
    "        deleted_df = pd.DataFrame(list(self.db[del_collection].find()))\n",
    "\n",
    "        # save the data frames as csv files\n",
    "        new_corpora.set_index('_id', inplace=True)\n",
    "\n",
    "        deleted_df.set_index('_id', inplace=True)\n",
    "\n",
    "        new_corpora.to_csv(sentences_path, index=False)\n",
    "\n",
    "        deleted_df.to_csv(deleted_path, index=False)\n",
    "    \n",
    "    def load_data_frames(self, collection: str = \"sentences\", del_collection: str = \"deleted\"):\n",
    "        \n",
    "        # recuperate the new corpora\n",
    "        new_corpora = pd.DataFrame(list(self.db[collection].find()))\n",
    "\n",
    "        # recuperate the deleted sentences as a Data Frame\n",
    "        deleted_df = pd.DataFrame(list(self.db[del_collection].find()))\n",
    "        \n",
    "        return new_corpora, deleted_df"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "pytorch1-HleOW5am-py3.10",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.8"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}