File size: 3,356 Bytes
8d175cc
 
 
 
 
5722b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from transformers import TextClassificationPipeline, AutoTokenizer, AutoModelForSequenceClassification
import gradio as gr
import os


class ClassifierInterface:
    def __init__(self):
        self.models = [
            "Overfit-GM/bert-base-turkish-cased-offensive",
            "Overfit-GM/bert-base-turkish-uncased-offensive",
            "Overfit-GM/bert-base-turkish-128k-cased-offensive",
            "Overfit-GM/bert-base-turkish-128k-uncased-offensive",
            "Overfit-GM/convbert-base-turkish-mc4-cased-offensive",
            "Overfit-GM/convbert-base-turkish-mc4-uncased-offensive",
            "Overfit-GM/convbert-base-turkish-cased-offensive",
            "Overfit-GM/distilbert-base-turkish-cased-offensive",
            "Overfit-GM/electra-base-turkish-cased-discriminator-offensive",
            "Overfit-GM/electra-base-turkish-mc4-cased-discriminator-offensive",
            "Overfit-GM/electra-base-turkish-mc4-uncased-discriminator-offensive",
            "Overfit-GM/xlm-roberta-large-turkish-offensive",
            "Overfit-GM/mdeberta-v3-base-offensive"
        ]
        self.model_box=[
            gr.load(self.models[0], src='models', hf_token=os.environ['API_KEY']),
            gr.load(self.models[1], src='models', hf_token=os.environ['API_KEY']),
            gr.load(self.models[2], src='models', hf_token=os.environ['API_KEY']),
            gr.load(self.models[3], src='models', hf_token=os.environ['API_KEY']),
            gr.load(self.models[4], src='models', hf_token=os.environ['API_KEY']),
            gr.load(self.models[5], src='models', hf_token=os.environ['API_KEY']),
            gr.load(self.models[6], src='models', hf_token=os.environ['API_KEY']),
            gr.load(self.models[7], src='models', hf_token=os.environ['API_KEY']),
            gr.load(self.models[8], src='models', hf_token=os.environ['API_KEY']),
            gr.load(self.models[9], src='models', hf_token=os.environ['API_KEY']),
            gr.load(self.models[10], src='models', hf_token=os.environ['API_KEY']),
            gr.load(self.models[11], src='models', hf_token=os.environ['API_KEY']),
            gr.load(self.models[12], src='models', hf_token=os.environ['API_KEY'])
        ]



    def sentiment_analysis(self, text, model_choice):
        model = self.model_box[model_choice]
        output = model(text)
        return output


    def __call__(self):
        with gr.Blocks() as classifier_interface:
            gr.HTML("""<h1 style="font-weight:600;font-size:50;margin-top:4px;margin-bottom:4px;text-align:center;">No Offense Classifier</h1></div>""")
            with gr.Row():
                with gr.Column():
                    model_choice = gr.Dropdown(label="Select Model", choices=[m for m in self.models], type="index", interactive=True)
                    input_text = gr.Textbox(label="Input", placeholder="senin ben amk")
                    the_button = gr.Button(label="Run")
                with gr.Column():
                    output_window = gr.Label(num_top_classes=5)

            the_button.click(self.sentiment_analysis, inputs=[input_text, model_choice], outputs=[output_window])
            examples = gr.Examples(examples=["bu adamların ülkesine dönmesi lazım", "adam olsan oraya gitmezdin"],
                                inputs=[input_text])
        return classifier_interface