Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, File, UploadFile, HTTPException | |
from PIL import Image | |
import numpy as np | |
import pickle | |
from io import BytesIO | |
import math | |
import base64 | |
app = FastAPI() | |
# Cargar el modelo SOM previamente entrenado | |
with open("som.pkl", "rb") as tf: | |
som = pickle.load(tf) | |
M = np.array([ | |
[ 0., -1., -1., -1., -1., 2., -1., -1., -1., 3.], | |
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], | |
[-1., -1., -1., 1., -1., -1., -1., -1., -1., -1.], | |
[ 1., -1., -1., -1., -1., -1., -1., -1., -1., 0.], | |
[-1., -1., -1., -1., 1., -1., -1., -1., -1., -1.], | |
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], | |
[ 3., -1., -1., -1., -1., -1., -1., -1., -1., 3.], | |
[-1., -1., -1., 0., -1., -1., 3., -1., -1., -1.], | |
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], | |
[ 2., -1., -1., -1., 1., -1., -1., -1., -1., 2.] | |
]) | |
# Funci贸n para realizar la predicci贸n de huellas dactilares | |
def predict_fingerprint(image): | |
try: | |
# Preprocesar la imagen para que coincida con las dimensiones esperadas por el SOM | |
processed_image = preprocess_image(image) | |
# Obtener la ubicaci贸n del nodo ganador en el SOM | |
winner = som.winner(processed_image) | |
# Asignar la etiqueta correspondiente a la ubicaci贸n ganadora en el SOM | |
fingerprint_type = get_fingerprint_type(winner) | |
return fingerprint_type | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
def preprocess_image(image): | |
# Guardar la imagen en formato TIFF | |
image.save("temp_image.tif") | |
# Aplicar el mismo preprocesamiento que a arco1.tif | |
processed_image = representativo("temp_image.tif") | |
# Redimensionar la imagen procesada para que coincida con las dimensiones esperadas por el modelo SOM | |
processed_image_resized = processed_image.reshape(1, -1) | |
return processed_image_resized | |
def get_fingerprint_type(winner): | |
# Usar la matriz M del c贸digo SOM para asignar la etiqueta correspondiente | |
labels = {0: "LL", 1: "RL", 2: "WH", 3: "AR"} # Mapa de etiquetas | |
fingerprint_type = labels[int(M[winner[0], winner[1]])] | |
return fingerprint_type | |
async def predict_fingerprint_api(file: UploadFile = File(...)): | |
try: | |
contents = await file.read() | |
print(f"contents:\n{contents}") | |
image = Image.open(BytesIO(base64.decodebytes(bytes(base64_str, "utf-8")))) | |
print(f"image:\n{image}") | |
fingerprint_type = predict_fingerprint(image) | |
return {"prediction": fingerprint_type} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
def sobel(I): | |
m,n = I.shape# I de 254x254 | |
Gx = np.zeros([m-2,n-2],np.float32)# Gx de 252x252 | |
Gy = np.zeros([m-2,n-2],np.float32)# Gy de 252x252 | |
gx = [[-1,0,1],[ -2,0,2],[ -1,0,1]] | |
gy = [[1,2,1],[ 0,0,0],[ -1,-2,-1]] | |
for j in range(1,m-2): | |
for i in range(1,n-2): | |
Gx[j-1,i-1] = sum(sum(I[j-1:j+2,i-1:i+2]*gx)) | |
Gy[j-1,i-1] = sum(sum(I[j-1:j+2,i-1:i+2]*gy)) | |
return Gx,Gy | |
def medfilt2(G,d=3): | |
m,n = G.shape | |
temp = np.zeros([m+2*(d//2),n+2*(d//2)],np.float32) | |
salida = np.zeros([m,n],np.float32) | |
temp[1:m+1,1:n+1] = G | |
for i in range(1,m): | |
for j in range(1,n): | |
A = np.asarray(temp[i-1:i+2,j-1:j+2]).reshape(-1) | |
salida[i-1,j-1] = np.sort(A)[d+1] | |
return salida | |
def orientacion(patron,w): | |
Gx,Gy = sobel(patron)# patron de 254x254 | |
Gx = medfilt2(Gx)# Gx de 252x252 | |
Gy = medfilt2(Gy)# Gy de 252x252 | |
m,n = Gx.shape | |
mOrientaciones = np.zeros([m//w,n//w],np.float32)# de una matriz de 18x18 | |
for i in range(m//w): | |
for j in range(n//w): | |
YY = sum(sum(2*Gx[i*w:(i+1)*w,j:j+1]*Gy[i*w:(i+1)*w,j:j+1])) | |
XX = sum(sum(Gx[i*w:(i+1)*w,j:j+1]**2-Gy[i*w:(i+1)*w,j:j+1]**2)) | |
#YY = sum(sum(2*Gx[i*w:(i+1)*w,0:1]*Gy[i*w:(i+1)*w,0:1])) | |
#XX = sum(sum(Gx[i*w:(i+1)*w,0:1]**2-Gy[i*w:(i+1)*w,0:1]**2)) | |
mOrientaciones[i,j] = (0.5*math.atan2(YY,XX) + math.pi/2.0)*(180.0/math.pi) | |
return mOrientaciones | |
def representativo(archivo): | |
im = Image.open(archivo).convert('L') | |
m,n = im.size | |
imarray = np.array(im,np.float32) | |
patron = imarray[1:m-1,1:n-1]# de 256x256 a 254x254 | |
EE = orientacion(patron,14)# retorna EE de 18x18 | |
return np.asarray(EE).reshape(-1) | |