Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,12 @@
|
|
1 |
-
import
|
|
|
2 |
import numpy as np
|
3 |
-
|
4 |
-
from
|
5 |
-
from typing import List
|
6 |
import math
|
7 |
|
8 |
-
class InputData(BaseModel):
|
9 |
-
array: List[List[int]]
|
10 |
-
|
11 |
app = FastAPI()
|
12 |
|
13 |
-
# Cargar el modelo SOM
|
14 |
-
def load_model():
|
15 |
-
with open('som.pkl', 'rb') as fid:
|
16 |
-
som = pickle.load(fid)
|
17 |
-
return som
|
18 |
-
|
19 |
-
def sobel(I):
|
20 |
-
m, n = I.shape
|
21 |
-
Gx = np.zeros([m, n], np.float32)
|
22 |
-
Gy = np.zeros([m, n], np.float32)
|
23 |
-
gx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
|
24 |
-
gy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])
|
25 |
-
for j in range(1, m-1):
|
26 |
-
for i in range(1, n-1):
|
27 |
-
Gx[j, i] = np.sum(I[j-1:j+2, i-1:i+2] * gx)
|
28 |
-
Gy[j, i] = np.sum(I[j-1:j+2, i-1:i+2] * gy)
|
29 |
-
return Gx, Gy
|
30 |
-
|
31 |
-
def medfilt2(G, d=3):
|
32 |
-
m, n = G.shape
|
33 |
-
temp = np.pad(G, pad_width=d//2, mode='constant', constant_values=0)
|
34 |
-
salida = np.zeros([m, n], np.float32)
|
35 |
-
for i in range(m):
|
36 |
-
for j in range(n):
|
37 |
-
A = temp[i:i+d, j:j+d].flatten()
|
38 |
-
salida[i, j] = np.median(A)
|
39 |
-
return salida
|
40 |
-
|
41 |
-
def orientacion(patron, w):
|
42 |
-
Gx, Gy = sobel(patron)
|
43 |
-
Gx = medfilt2(Gx)
|
44 |
-
Gy = medfilt2(Gy)
|
45 |
-
m, n = Gx.shape
|
46 |
-
mOrientaciones = np.zeros([m//w, n//w], np.float32)
|
47 |
-
for i in range(m//w):
|
48 |
-
for j in range(n//w):
|
49 |
-
YY = np.sum(2 * Gx[i*w:(i+1)*w, j*w:(j+1)*w] * Gy[i*w:(i+1)*w, j*w:(j+1)*w])
|
50 |
-
XX = np.sum(Gx[i*w:(i+1)*w, j*w:(j+1)*w]**2 - Gy[i*w:(i+1)*w, j*w:(j+1)*w]**2)
|
51 |
-
mOrientaciones[i, j] = (0.5 * math.atan2(YY, XX) + math.pi / 2.0) * (180.0 / math.pi)
|
52 |
-
return mOrientaciones
|
53 |
-
|
54 |
-
def representativo(imarray):
|
55 |
-
imarray = np.squeeze(imarray)
|
56 |
-
m, n = imarray.shape
|
57 |
-
patron = imarray[1:m-1, 1:n-1]
|
58 |
-
EE = orientacion(patron, 14)
|
59 |
-
return np.asarray(EE).reshape(-1)
|
60 |
-
|
61 |
som = load_model()
|
62 |
|
63 |
MM = np.array([
|
@@ -74,16 +23,60 @@ MM = np.array([
|
|
74 |
])
|
75 |
|
76 |
@app.post("/predict/")
|
77 |
-
async def
|
78 |
try:
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
82 |
representative_data = representative_data.reshape(1, -1)
|
83 |
|
84 |
w = som.winner(representative_data)
|
85 |
prediction = MM[w]
|
86 |
|
87 |
-
return {"prediction": prediction
|
88 |
except Exception as e:
|
89 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
+
from PIL import Image
|
3 |
import numpy as np
|
4 |
+
import pickle
|
5 |
+
from io import BytesIO
|
|
|
6 |
import math
|
7 |
|
|
|
|
|
|
|
8 |
app = FastAPI()
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
som = load_model()
|
11 |
|
12 |
MM = np.array([
|
|
|
23 |
])
|
24 |
|
25 |
@app.post("/predict/")
|
26 |
+
async def predict_fingerprint_api(file: UploadFile = File(...)):
|
27 |
try:
|
28 |
+
contents = await file.read()
|
29 |
+
image = Image.open(BytesIO(contents)).convert('L')
|
30 |
+
image = np.asarray(image)
|
31 |
+
print(f"ARRAY{image.size}:\n\n\n{image}")
|
32 |
+
image = np.array(image.array).reshape(256, 256, 1)
|
33 |
+
representative_data = representativo(image)
|
34 |
representative_data = representative_data.reshape(1, -1)
|
35 |
|
36 |
w = som.winner(representative_data)
|
37 |
prediction = MM[w]
|
38 |
|
39 |
+
return {"prediction": prediction}
|
40 |
except Exception as e:
|
41 |
raise HTTPException(status_code=500, detail=str(e))
|
42 |
+
|
43 |
+
def load_model():
|
44 |
+
with open('som.pkl', 'rb') as fid:
|
45 |
+
som = pickle.load(fid)
|
46 |
+
return som
|
47 |
+
|
48 |
+
def sobel(I):
|
49 |
+
m, n = I.shape
|
50 |
+
Gx = np.zeros([m-2, n-2], np.float32)
|
51 |
+
Gy = np.zeros([m-2, n-2], np.float32)
|
52 |
+
gx = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]
|
53 |
+
gy = [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]
|
54 |
+
for j in range(1, m-2):
|
55 |
+
for i in range(1, n-2):
|
56 |
+
Gx[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gx))
|
57 |
+
Gy[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gy))
|
58 |
+
return Gx, Gy
|
59 |
+
|
60 |
+
def medfilt2(G, d=3):
|
61 |
+
temp[1:m+1, 1:n+1] = G
|
62 |
+
for i in range(1, m):
|
63 |
+
for j in range(1, n):
|
64 |
+
A = np.asarray(temp[i-1:i+2, j-1:j+2]).reshape(-1)
|
65 |
+
salida[i-1, j-1] = np.sort(A)[d+1]
|
66 |
+
return salida
|
67 |
+
|
68 |
+
def orientacion(patron, w):
|
69 |
+
mOrientaciones = np.zeros([m//w, n//w], np.float32)
|
70 |
+
for i in range(m//w):
|
71 |
+
for j in range(n//w):
|
72 |
+
YY = sum(sum(2*Gx[i*w:(i+1)*w, j:j+1] * Gy[i*w:(i+1)*w, j:j+1]))
|
73 |
+
XX = sum(sum(Gx[i*w:(i+1)*w, j:j+1]**2 - Gy[i*w:(i+1)*w, j:j+1]**2))
|
74 |
+
mOrientaciones[i, j] = (0.5 * math.atan2(YY, XX) + math.pi / 2.0) * (180.0 / math.pi)
|
75 |
+
return mOrientaciones
|
76 |
+
|
77 |
+
def representativo(imarray):
|
78 |
+
imarray = np.squeeze(imarray)
|
79 |
+
m, n = imarray.shape
|
80 |
+
patron = imarray[1:m-1, 1:n-1]
|
81 |
+
EE = orientacion(patron, 14)
|
82 |
+
return np.asarray(EE).reshape(-1)
|