Overglitch commited on
Commit
9272b87
·
verified ·
1 Parent(s): dfbd2d8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -21
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import pickle
2
- from minisom import MiniSom
3
  import numpy as np
4
  from fastapi import FastAPI, HTTPException
5
  from pydantic import BaseModel
@@ -14,30 +13,29 @@ app = FastAPI()
14
  # Cargar el modelo SOM
15
  def load_model():
16
  with open('som.pkl', 'rb') as fid:
17
- somecoli = pickle.load(fid)
18
- return somecoli
19
 
20
  def sobel(I):
21
  m, n = I.shape
22
- Gx = np.zeros([m-2, n-2], np.float32)
23
- Gy = np.zeros([m-2, n-2], np.float32)
24
- gx = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]
25
- gy = [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]
26
- for j in range(1, m-2):
27
- for i in range(1, n-2):
28
- Gx[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gx))
29
- Gy[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gy))
30
  return Gx, Gy
31
 
32
  def medfilt2(G, d=3):
33
  m, n = G.shape
34
- temp = np.zeros([m+2*(d//2), n+2*(d//2)], np.float32)
35
  salida = np.zeros([m, n], np.float32)
36
- temp[1:m+1, 1:n+1] = G
37
- for i in range(1, m):
38
- for j in range(1, n):
39
- A = np.asarray(temp[i-1:i+2, j-1:j+2]).reshape(-1)
40
- salida[i-1, j-1] = np.sort(A)[d+1]
41
  return salida
42
 
43
  def orientacion(patron, w):
@@ -48,8 +46,8 @@ def orientacion(patron, w):
48
  mOrientaciones = np.zeros([m//w, n//w], np.float32)
49
  for i in range(m//w):
50
  for j in range(n//w):
51
- YY = sum(sum(2*Gx[i*w:(i+1)*w, j:j+1] * Gy[i*w:(i+1)*w, j:j+1]))
52
- XX = sum(sum(Gx[i*w:(i+1)*w, j:j+1]**2 - Gy[i*w:(i+1)*w, j:j+1]**2))
53
  mOrientaciones[i, j] = (0.5 * math.atan2(YY, XX) + math.pi / 2.0) * (180.0 / math.pi)
54
  return mOrientaciones
55
 
@@ -78,13 +76,13 @@ MM = np.array([
78
  @app.post("/predict/")
79
  async def predict(data: InputData):
80
  try:
81
- input_data = np.array(data.array).reshape(256, 256, 1)
82
  representative_data = representativo(input_data)
83
  representative_data = representative_data.reshape(1, -1)
84
 
85
  w = som.winner(representative_data)
86
  prediction = MM[w]
87
 
88
- return {"prediction": prediction}
89
  except Exception as e:
90
  raise HTTPException(status_code=500, detail=str(e))
 
1
  import pickle
 
2
  import numpy as np
3
  from fastapi import FastAPI, HTTPException
4
  from pydantic import BaseModel
 
13
  # Cargar el modelo SOM
14
  def load_model():
15
  with open('som.pkl', 'rb') as fid:
16
+ som = pickle.load(fid)
17
+ return som
18
 
19
  def sobel(I):
20
  m, n = I.shape
21
+ Gx = np.zeros([m, n], np.float32)
22
+ Gy = np.zeros([m, n], np.float32)
23
+ gx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
24
+ gy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])
25
+ for j in range(1, m-1):
26
+ for i in range(1, n-1):
27
+ Gx[j, i] = np.sum(I[j-1:j+2, i-1:i+2] * gx)
28
+ Gy[j, i] = np.sum(I[j-1:j+2, i-1:i+2] * gy)
29
  return Gx, Gy
30
 
31
  def medfilt2(G, d=3):
32
  m, n = G.shape
33
+ temp = np.pad(G, pad_width=d//2, mode='constant', constant_values=0)
34
  salida = np.zeros([m, n], np.float32)
35
+ for i in range(m):
36
+ for j in range(n):
37
+ A = temp[i:i+d, j:j+d].flatten()
38
+ salida[i, j] = np.median(A)
 
39
  return salida
40
 
41
  def orientacion(patron, w):
 
46
  mOrientaciones = np.zeros([m//w, n//w], np.float32)
47
  for i in range(m//w):
48
  for j in range(n//w):
49
+ YY = np.sum(2 * Gx[i*w:(i+1)*w, j*w:(j+1)*w] * Gy[i*w:(i+1)*w, j*w:(j+1)*w])
50
+ XX = np.sum(Gx[i*w:(i+1)*w, j*w:(j+1)*w]**2 - Gy[i*w:(i+1)*w, j*w:(j+1)*w]**2)
51
  mOrientaciones[i, j] = (0.5 * math.atan2(YY, XX) + math.pi / 2.0) * (180.0 / math.pi)
52
  return mOrientaciones
53
 
 
76
  @app.post("/predict/")
77
  async def predict(data: InputData):
78
  try:
79
+ input_data = np.array(data.array).reshape(256, 256)
80
  representative_data = representativo(input_data)
81
  representative_data = representative_data.reshape(1, -1)
82
 
83
  w = som.winner(representative_data)
84
  prediction = MM[w]
85
 
86
+ return {"prediction": prediction.tolist()}
87
  except Exception as e:
88
  raise HTTPException(status_code=500, detail=str(e))