import pickle import numpy as np from fastapi import FastAPI, HTTPException from pydantic import BaseModel from typing import List import math class InputData(BaseModel): array: List[List[int]] app = FastAPI() # Cargar el modelo SOM def load_model(): with open('som.pkl', 'rb') as fid: som = pickle.load(fid) return som def sobel(I): m, n = I.shape Gx = np.zeros([m, n], np.float32) Gy = np.zeros([m, n], np.float32) gx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) gy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) for j in range(1, m-1): for i in range(1, n-1): Gx[j, i] = np.sum(I[j-1:j+2, i-1:i+2] * gx) Gy[j, i] = np.sum(I[j-1:j+2, i-1:i+2] * gy) return Gx, Gy def medfilt2(G, d=3): m, n = G.shape temp = np.pad(G, pad_width=d//2, mode='constant', constant_values=0) salida = np.zeros([m, n], np.float32) for i in range(m): for j in range(n): A = temp[i:i+d, j:j+d].flatten() salida[i, j] = np.median(A) return salida def orientacion(patron, w): Gx, Gy = sobel(patron) Gx = medfilt2(Gx) Gy = medfilt2(Gy) m, n = Gx.shape mOrientaciones = np.zeros([m//w, n//w], np.float32) for i in range(m//w): for j in range(n//w): YY = np.sum(2 * Gx[i*w:(i+1)*w, j*w:(j+1)*w] * Gy[i*w:(i+1)*w, j*w:(j+1)*w]) XX = np.sum(Gx[i*w:(i+1)*w, j*w:(j+1)*w]**2 - Gy[i*w:(i+1)*w, j*w:(j+1)*w]**2) mOrientaciones[i, j] = (0.5 * math.atan2(YY, XX) + math.pi / 2.0) * (180.0 / math.pi) return mOrientaciones def representativo(imarray): imarray = np.squeeze(imarray) m, n = imarray.shape patron = imarray[1:m-1, 1:n-1] EE = orientacion(patron, 14) return np.asarray(EE).reshape(-1) som = load_model() MM = np.array([ [ 0., -1., -1., -1., -1., 2., -1., -1., -1., 3.], [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], [-1., -1., -1., 1., -1., -1., -1., -1., -1., -1.], [ 1., -1., -1., -1., -1., -1., -1., -1., -1., 0.], [-1., -1., -1., -1., 1., -1., -1., -1., -1., -1.], [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], [ 3., -1., -1., -1., -1., -1., -1., -1., -1., 3.], [-1., -1., -1., 0., -1., -1., 3., -1., -1., -1.], [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], [ 2., -1., -1., -1., 1., -1., -1., -1., -1., 2.] ]) @app.post("/predict/") async def predict(data: InputData): try: print(data.array) input_data = np.array(data.array).reshape(256, 256) representative_data = representativo(input_data) representative_data = representative_data.reshape(1, -1) w = som.winner(representative_data) prediction = MM[w] return {"prediction": prediction.tolist()} except Exception as e: raise HTTPException(status_code=500, detail=str(e))