from fastapi import FastAPI, File, UploadFile, HTTPException from PIL import Image import numpy as np import pickle from io import BytesIO import math app = FastAPI() # Cargar el modelo SOM previamente entrenado with open("som.pkl", "rb") as tf: som = pickle.load(tf) M = np.array([ [ 0., -1., -1., -1., -1., 2., -1., -1., -1., 3.], [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], [-1., -1., -1., 1., -1., -1., -1., -1., -1., -1.], [ 1., -1., -1., -1., -1., -1., -1., -1., -1., 0.], [-1., -1., -1., -1., 1., -1., -1., -1., -1., -1.], [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], [ 3., -1., -1., -1., -1., -1., -1., -1., -1., 3.], [-1., -1., -1., 0., -1., -1., 3., -1., -1., -1.], [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], [ 2., -1., -1., -1., 1., -1., -1., -1., -1., 2.] ]) def predict_fingerprint(image): try: processed_image = preprocess_image(image) winner = som.winner(processed_image) fingerprint_type = get_fingerprint_type(winner) return fingerprint_type except Exception as e: raise HTTPException(status_code=500, detail=str(e)) def preprocess_image(image): # Guardar la imagen en formato TIFF image.resize((256,256)) image.save("temp_image.tiff") processed_image = representativo("temp_image.tiff") processed_image_resized = processed_image.reshape(1, -1) return processed_image_resized def get_fingerprint_type(winner): labels = {0: "LL", 1: "RL", 2: "WH", 3: "AR"} fingerprint_type = labels[int(M[winner[0], winner[1]])] return fingerprint_type @app.post("/predict/") async def predict_fingerprint_api(file: UploadFile = File(...)): try: contents = await file.read() image = Image.open(BytesIO(contents)).convert('L') print(f"IMAGEN\n\n{list(image.getdata())}") fingerprint_type = predict_fingerprint(image) return {"prediction": fingerprint_type} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) def sobel(I): m, n = I.shape Gx = np.zeros([m-2, n-2], np.float32) Gy = np.zeros([m-2, n-2], np.float32) gx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) gy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) for j in range(1, m-2): for i in range(1, n-2): Gx[j-1, i-1] = np.sum(I[j-1:j+2, i-1:i+2] * gx) Gy[j-1, i-1] = np.sum(I[j-1:j+2, i-1:i+2] * gy) return Gx, Gy def medfilt2(G, d=3): m, n = G.shape temp = np.zeros([m+2*(d//2), n+2*(d//2)], np.float32) salida = np.zeros([m, n], np.float32) temp[1:m+1, 1:n+1] = G for i in range(1, m): for j in range(1, n): A = np.sort(temp[i-1:i+2, j-1:j+2].reshape(-1)) salida[i-1, j-1] = A[d+1] return salida def orientacion(patron, w): Gx, Gy = sobel(patron) Gx = medfilt2(Gx) Gy = medfilt2(Gy) m, n = Gx.shape mOrientaciones = np.zeros([m//w, n//w], np.float32) for i in range(m//w): for j in range(n//w): YY = np.sum(2 * Gx[i*w:(i+1)*w, j:j+1] * Gy[i*w:(i+1)*w, j:j+1]) XX = np.sum(Gx[i*w:(i+1)*w, j:j+1]**2 - Gy[i*w:(i+1)*w, j:j+1]**2) mOrientaciones[i, j] = (0.5 * math.atan2(YY, XX) + math.pi/2.0) * (180.0 / math.pi) return mOrientaciones def representativo(archivo): im = Image.open(archivo) m, n = im.size imarray = np.array(im, np.float32) patron = imarray[1:m-1, 1:n-1] EE = orientacion(patron, 14) return np.asarray(EE).reshape(-1)