def handle_long_text(text, model, tokenizer, max_length=2048, stride=128): encoded_input = tokenizer( text, max_length=max_length, stride=stride, truncation=True, return_overflowing_tokens=True, return_tensors="pt", ) summaries = [] for input_ids, attention_mask in zip( encoded_input.input_ids, encoded_input.attention_mask ): output = model.generate( input_ids.to(model.device), attention_mask=attention_mask.to(model.device), max_length=128, num_beams=4, ) summaries.append(tokenizer.decode(output[0], skip_special_tokens=True)) return " ".join(summaries)