# -*- coding: utf-8 -*- """ Created on Mon May 8 23:57:50 2023 @author: ME """ from sklearn.feature_extraction.text import TfidfVectorizer from src.preprocessor import Preprocessing import joblib # Load the saved TF-IDF preprocessor using joblib path = "Artifacts/tfidf_preprocessor.pkl" class Prediction: def __init__(self,pred_data,model): self.pred_data = pred_data self.model = model def predict(self): preprocess_data = Preprocessing(self.pred_data).preprocess_text() loaded_tfidf = joblib.load(path) data = loaded_tfidf.transform(preprocess_data) predicted = self.model.predict(data) proba = self.model.predict_proba(data) if predicted[0] == 0: return "The news is fake",proba else: return "The news is real",proba