OzlemAkgunoglu commited on
Commit
9c5afe2
1 Parent(s): 65d70bf

Delete photo_filter.py

Browse files
Files changed (1) hide show
  1. photo_filter.py +0 -114
photo_filter.py DELETED
@@ -1,114 +0,0 @@
1
- '''
2
- author : OzlemAkgunoglu
3
- github : https://github.com/OzlemAkgunoglu
4
- Dynamic Photo Filter App
5
- This is a Dynamic Photo Filter App that allows you to apply various filters to your images.
6
- Adjust brightness, contrast, sharpening, and select a filter for real-time changes.
7
- And this app is created using OpenCV and Gradio. Thank you for using it. '''
8
-
9
- #Let's load the necessary libraries
10
- import cv2 as cv #OpenCV for image processing
11
- import numpy as np #Numpy for arrays
12
- import gradio as gr #Gradio for UI
13
-
14
- # Let's define the filter functions
15
- def apply_grayscale(image):
16
- return cv.cvtColor(image, cv.COLOR_BGR2GRAY) #Convert the image to grayscale
17
-
18
- #Sepia filter function
19
- def apply_sepia(image):
20
- sepia_filter = np.array([[0.272, 0.534, 0.131],
21
- [0.349, 0.686, 0.168],
22
- [0.393, 0.769, 0.189]])
23
- sepia_image = cv.transform(image, sepia_filter) #Apply the filter
24
- return np.clip(sepia_image, 0, 255).astype(np.uint8) #clip to hold values between 0 and 255 prevent excessive brightness or darkening.
25
-
26
- def apply_negative(image):
27
- return cv.bitwise_not(image) #Invert the image
28
-
29
- #sketch filter
30
- '''Apply Gaussian blur to decrease the noise
31
- and remove unwanted details in the image for better sketch effect '''
32
- def apply_sketch(image):
33
- gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) #Convert the image to grayscale
34
- inv = cv.bitwise_not(gray) #Invert the grayscale image
35
- blurred = cv.GaussianBlur(inv, (21, 21), sigmaX=0, sigmaY=0)
36
- sketch_image = cv.divide(gray, 255 - blurred, scale=256)
37
- # divide= gray / (255 - blurred) Normalizes the division result to prevent overly high values by scaling with 256
38
- return sketch_image
39
-
40
- def apply_sharpen(image, sharpening):
41
- sharpening_filter = np.array([[0, -1, 0],
42
- [-1, 5 + sharpening, -1],
43
- [0, -1, 0]])
44
- return cv.filter2D(image, -1, sharpening_filter) #Apply the filter each pixel is multiplied by the value in the kernel
45
- def apply_edge_detection(image):
46
- return cv.Canny(image, 100, 200)
47
- def apply_fall_filter(frame):
48
- fall_filter = np.array([[0.393, 0.769, 0.189],
49
- [0.349, 0.686, 0.168],
50
- [0.272, 0.534, 0.131]])
51
- return cv.transform(frame, fall_filter)
52
-
53
-
54
- # Dictionary to map filter names to functions
55
- filter_functions = {
56
- "Grayscale": apply_grayscale,
57
- "Sepia": apply_sepia,
58
- "Negative": apply_negative,
59
- "Sketch": apply_sketch,
60
- "Sharpen": apply_sharpen,
61
- "Edge Detection": apply_edge_detection,
62
- "Fall": apply_fall_filter
63
- }
64
-
65
- # Main function to apply selected filters
66
- def apply_filters(image, filter_type, brightness, contrast, sharpening):
67
- if image is None:
68
- print("Input image is empty!") #for debugging
69
- return None # Return None if the input image is empty
70
-
71
- # Adjust brightness and contrast
72
- image = cv.convertScaleAbs(image, alpha=contrast, beta=brightness)
73
-
74
- #for debugging
75
- #print("Image after brightness and contrast adjustment:", image)
76
-
77
-
78
- # Apply the selected filter from dictionary called filter_functions in line 53
79
- if filter_type in filter_functions:
80
- if filter_type == "Sharpen":
81
- image = filter_functions[filter_type](image, sharpening) # Calls the Sharpen filter with the sharpening parameter for custom sharpening level
82
- else:
83
- image = filter_functions[filter_type](image)
84
-
85
- return image
86
-
87
- # Define Interface
88
- with gr.Blocks() as app:
89
- # Title and Description
90
- gr.Markdown("<h1 style='text-align: center;'>Dynamic Photo Filter App</h1>")
91
- gr.Markdown("This app allows you to apply various filters to your images. Adjust brightness, contrast, sharpening, and select a filter for real-time changes.")
92
-
93
- # Choices and Sliders at the Top
94
- with gr.Row():
95
- filter_choice = gr.Radio(["Original", "Grayscale", "Sketch", "Sepia", "Negative", "Sharpen", "Edge Detection","Fall"],label="Filter")
96
-
97
- with gr.Column():
98
- brightness_slider = gr.Slider(-100, 100, step=1, label="Brightness", value=0)
99
- contrast_slider = gr.Slider(0.5, 3.0, step=0.1, label="Contrast", value=1.0)
100
- sharpening_slider = gr.Slider(0, 5, step=0.1, label="Sharpening", value=0)
101
-
102
- # Horizontal display of the images
103
- with gr.Row():
104
- image_input = gr.Image(label="Upload Image", type="numpy")
105
- image_output = gr.Image(label="Filtered Image")
106
-
107
- # Link events for real-time updates
108
- image_input.change(apply_filters, inputs=[image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider], outputs=image_output)
109
- filter_choice.change(apply_filters, inputs=[image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider], outputs=image_output)
110
- brightness_slider.change(apply_filters, inputs=[image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider], outputs=image_output)
111
- contrast_slider.change(apply_filters, inputs=[image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider], outputs=image_output)
112
- sharpening_slider.change(apply_filters, inputs=[image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider], outputs=image_output)
113
-
114
- app.launch(share=True)