File size: 15,646 Bytes
4167694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import copy
import random
from typing import Callable, Optional, Tuple


def initialize_population(services: dict, users: dict, population_size: int) -> list:
    """
    Initialize the population of assignment solutions for the genetic algorithm.

    Args:
        services (dict): A dictionary containing service constraints.
        users (dict): A dictionary containing user preferences and constraints.
        population_size (int): The number of assignment solutions to generate.

    Returns:
        list: A list of generated assignment solutions.
    """
    population = []

    # Generate population_size number of assignment solutions
    for _ in range(population_size):
        assignment_solution = {}

        for service in services.keys():
            # Randomly assign users to each service, while considering user preferences and constraints
            assigned_users = []
            for user, user_info in users.items():
                # Check if user cannot be assigned to this service
                if service not in user_info["cannot_assign"]:
                    # Assign user to service based on their preference
                    if service in user_info["preferences"]:
                        assigned_users.append(user)
                    # Assign user to service with a small probability if not in their preferences
                    elif random.random() < 0.1:
                        assigned_users.append(user)

            # Shuffle the list of assigned users to create random assignments
            random.shuffle(assigned_users)
            assignment_solution[service] = assigned_users

        # Add the generated assignment solution to the population
        population.append(assignment_solution)

    return population


def calculate_fitness(population: list, services: dict, users: dict, fitness_fn: Optional[Callable] = None) -> list:
    """
    Calculate the fitness of each assignment solution in the population.

    Args:
        population (list): A list of assignment solutions.
        services (dict): A dictionary containing service constraints.
        users (dict): A dictionary containing user preferences and constraints.
        fitness_fn (Optional[Callable]): An optional custom fitness function.

    Returns:
        list: A list of fitness scores for each assignment solution in the population.
    """
    if not fitness_fn:
        fitness_fn = default_fitness_function

    fitness_scores = []

    # Calculate the fitness score for each assignment solution in the population
    for assignment_solution in population:
        fitness_score = fitness_fn(assignment_solution, services, users)
        fitness_scores.append(fitness_score)

    return fitness_scores


def default_fitness_function(assignment_solution: dict, services: dict, users: dict) -> float:
    """
    Calculate the fitness of an assignment solution based on the criteria described in the problem statement,
    including user preferences and cannot_assign constraints.

    Args:
        assignment_solution (dict): An assignment solution to evaluate.
        services (dict): A dictionary containing service constraints.
        users (dict): A dictionary containing user preferences and constraints.

    Returns:
        float: The fitness score of the given assignment solution.
    """
    fitness = 0

    for service, assigned_users in assignment_solution.items():
        service_info = services[service]
        num_assigned_users = len(assigned_users)

        # Bonus for solutions that assign users near the recommended value
        if service_info["min"] <= num_assigned_users <= service_info["max"]:
            fitness += abs(num_assigned_users - service_info["rec"])

        # Punish solutions that assign users below the minimum value
        elif num_assigned_users < service_info["min"]:
            fitness -= (service_info["min"] - num_assigned_users) * service_info["priority"]

        # Punish solutions that assign users above the maximum value
        else:  # num_assigned_users > service_info["max"]:
            fitness -= (num_assigned_users - service_info["max"]) * service_info["priority"]

        # Punish solutions that assign users to their cannot_assign services
        for user in assigned_users:
            if service in users[user]["cannot_assign"]:
                fitness -= 100 * service_info["priority"]

        # Bonus solutions that assign users to their preferred services
        for user, user_info in users.items():
            if service in user_info["preferences"] and user in assigned_users:
                fitness += 10

    return -fitness


def selection(fitness_scores: list) -> Tuple[int, int]:
    """
    Select two parent solutions from the population based on their fitness scores.

    Args:
        fitness_scores (list): A list of fitness scores for each assignment solution in the population.

    Returns:
        Tuple[int, int]: The indices of the two selected parent solutions in the population.
    """
    # Calculate the total fitness of the population
    total_fitness = sum(fitness_scores)

    # Calculate the relative fitness of each solution
    relative_fitness = [f / total_fitness for f in fitness_scores]

    # Select the first parent using roulette wheel selection
    parent1_index = -1
    r = random.random()
    accumulator = 0
    for i, rf in enumerate(relative_fitness):
        accumulator += rf
        if accumulator >= r:
            parent1_index = i
            break

    # Select the second parent using roulette wheel selection, ensuring it's different from the first parent
    parent2_index = -1
    while parent2_index == -1 or parent2_index == parent1_index:
        r = random.random()
        accumulator = 0
        for i, rf in enumerate(relative_fitness):
            accumulator += rf
            if accumulator >= r:
                parent2_index = i
                break

    return parent1_index, parent2_index


def crossover(parent1: dict, parent2: dict) -> dict:
    """
    Combine two parent assignment solutions to create a child solution.

    Args:
        parent1 (dict): The first parent assignment solution.
        parent2 (dict): The second parent assignment solution.

    Returns:
        dict: The child assignment solution created by combining the parents.
    """
    child_solution = {}

    # Iterate over the services in the parents
    for service in parent1.keys():
        # Create two sets of users assigned to the current service in parent1 and parent2
        assigned_users_parent1 = set(parent1[service])
        assigned_users_parent2 = set(parent2[service])

        # Perform set union to combine users assigned in both parents
        combined_assigned_users = assigned_users_parent1 | assigned_users_parent2

        # Randomly assign each user from the combined set to the child solution
        child_assigned_users = []
        for user in combined_assigned_users:
            if random.random() < 0.5:
                child_assigned_users.append(user)

        child_solution[service] = child_assigned_users

    return child_solution


def mutation(solution: dict, users: dict, mutation_rate: float = 0.01) -> dict:
    """
    Mutate an assignment solution by randomly reassigning users to services.

    Args:
        solution (dict): The assignment solution to mutate.
        users (dict): A dictionary containing user preferences and constraints.
        mutation_rate (float): The probability of mutation for each user in the solution (default: 0.01).

    Returns:
        dict: The mutated assignment solution.
    """
    mutated_solution = copy.deepcopy(solution)

    # Iterate over the services in the solution
    for service, assigned_users in mutated_solution.items():
        for user in assigned_users:
            # Check if the user should be mutated based on the mutation rate
            if random.random() < mutation_rate:
                # Remove the user from the current service
                assigned_users.remove(user)

                # Find a new service for the user while considering their cannot_assign constraints
                new_service = service
                while new_service == service or new_service in users[user]["cannot_assign"]:
                    new_service = random.choice(list(mutated_solution.keys()))

                # Assign the user to the new service
                mutated_solution[new_service].append(user)

    return mutated_solution


def report_generation(generation: int, fitness_scores: list, best_solution: dict, services: dict, users: dict) -> None:
    """
    Print a report of the genetic algorithm's progress for the current generation.

    Args:
        generation (int): The current generation number.
        fitness_scores (list): The fitness scores for the current population.
        best_solution (dict): The best assignment solution found so far.
        services (dict): The input services dictionary.
        users (dict): The input users dictionary.
    """
    best_fitness = min(fitness_scores)
    worst_fitness = max(fitness_scores)
    avg_fitness = sum(fitness_scores) / len(fitness_scores)
    generation_errors = polish_errors(calculate_errors(best_solution, services, users))

    print(f"Generation {generation}:")
    print(f"  Best fitness: {best_fitness}")
    print(f"  Worst fitness: {worst_fitness}")
    print(f"  Average fitness: {avg_fitness}")
    print(f"  Best solution so far: {best_solution}")
    print(f"  Errors so far: {generation_errors}")


def calculate_errors(solution: dict, services: dict, users: dict) -> dict:
    """
    Calculate the errors in the assignment solution based on the user and service constraints.

    Args:
        solution (dict): The assignment solution to analyze.
        services (dict): The input services dictionary.
        users (dict): The input users dictionary.

    Returns:
        dict: A dictionary containing the errors for each user and service in the assignment solution.
    """
    errors = {"users": {}, "services": {}}

    # Analyze user errors
    for user, user_data in users.items():
        errors["users"][user] = {"unmet_max_assignments": False, "unmet_preference": [], "unmet_cannot_assign": []}

        user_assignments = [service for service, assigned_users in solution.items() if user in assigned_users]
        if len(user_assignments) > user_data["max_assignments"]:
            errors["users"][user]["unmet_max_assignments"] = True
            errors["users"][user]["effective_assignments"] = len(user_assignments)

        for preferred_service in user_data["preferences"]:
            if preferred_service not in user_assignments:
                errors["users"][user]["unmet_preference"].append(preferred_service)

        for cannot_assign_service in user_data["cannot_assign"]:
            if cannot_assign_service in user_assignments:
                errors["users"][user]["unmet_cannot_assign"].append(cannot_assign_service)

    # Analyze service errors
    for service, service_data in services.items():
        errors["services"][service] = {"unmet_constraint": None, "extra_users": []}

        assigned_users = solution[service]
        num_assigned_users = len(assigned_users)

        if num_assigned_users < service_data["min"]:
            errors["services"][service]["unmet_constraint"] = "min"
        elif num_assigned_users > service_data["rec"]:
            errors["services"][service]["unmet_constraint"] = "rec"
        elif num_assigned_users > service_data["max"]:
            errors["services"][service]["unmet_constraint"] = "max"
            extra_users = assigned_users[service_data["max"]:]
            errors["services"][service]["extra_users"] = extra_users

    return errors


def polish_errors(errors: dict) -> dict:
    """
    Remove users and services without unmet constraints from the errors object.

    Args:
        errors (dict): The errors object to polish.

    Returns:
        dict: A polished errors object without users and services with no unmet constraints.
    """
    polished_errors = {"users": {}, "services": {}}

    for user, user_errors in errors["users"].items():
        polished_user_errors = {}

        if user_errors["unmet_max_assignments"]:
            polished_user_errors["unmet_max_assignments"] = True

        for key, value in user_errors.items():
            if key not in ["unmet_max_assignments"] and value:
                polished_user_errors[key] = value

        if polished_user_errors:
            polished_errors["users"][user] = polished_user_errors

    for service, service_errors in errors["services"].items():
        polished_service_errors = {}

        for key, value in service_errors.items():
            if value:
                polished_service_errors[key] = value

        if polished_service_errors:
            polished_errors["services"][service] = polished_service_errors

    return polished_errors


def genetic_algorithm(services: dict, users: dict, population_size: int = 100, num_generations: int = 100,
                      mutation_rate: float = 0.01, fitness_fn: Optional[Callable] = None) -> dict:
    """
    Run the genetic algorithm to find an optimal assignment solution based on user preferences and constraints.

    Args:
        services (dict): The input services dictionary.
        users (dict): The input users dictionary.
        population_size (int): The size of the population for each generation (default: 100).
        num_generations (int): The number of generations for the genetic algorithm to run (default: 100).
        mutation_rate (float): The probability of mutation for each individual in the population (default: 0.01).
        fitness_fn (Callable, optional): An optional custom fitness function.

    Returns:
        dict: The best assignment solution found by the genetic algorithm.
    """
    # Initialize the population
    population = initialize_population(services, users, population_size)

    # If no custom fitness function is provided, use the default fitness function
    if fitness_fn is None:
        fitness_fn = default_fitness_function

    # Calculate the initial fitness scores for the population
    fitness_scores = calculate_fitness(population, services, users, fitness_fn)

    best_solution = None
    best_fitness = float('inf')

    # Main loop of the genetic algorithm
    for generation in range(num_generations):
        # Select two parent solutions based on their fitness scores
        parent1_index, parent2_index = selection(fitness_scores)

        # Create a child solution by combining the parents using crossover
        child_solution = crossover(population[parent1_index], population[parent2_index])

        # Mutate the child solution
        mutated_child_solution = mutation(child_solution, users, mutation_rate)

        # Calculate the fitness of the child solution
        child_fitness = fitness_fn(mutated_child_solution, services, users)

        # Replace the least-fit solution in the population with the child solution
        worst_fitness_index = fitness_scores.index(max(fitness_scores))
        population[worst_fitness_index] = mutated_child_solution
        fitness_scores[worst_fitness_index] = child_fitness

        # Update the best solution found so far
        if child_fitness < best_fitness:
            best_solution = mutated_child_solution
            best_fitness = child_fitness

        # Print the progress of the algorithm
        report_generation(generation, fitness_scores, best_solution, services, users)

    return best_solution