import math
from abc import abstractmethod

import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F

from .util import (
    checkpoint,conv_nd,linear,avg_pool_nd,
    zero_module,normalization,timestep_embedding,
)
from ..modules.attention.spatial_transformer import SpatialTransformer


# dummy replace
def convert_module_to_f16(param):
    """
    Convert primitive modules to float16.
    """
    if isinstance(param, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
        param.weight.data = param.weight.data.half()
        if param.bias is not None:
            param.bias.data = param.bias.data.half()
def convert_module_to_f32(x): pass


## go
class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

    def forward(self, x, emb, context=None):
        for layer in self:
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            elif isinstance(layer, SpatialTransformer):
                x = layer(x, context)
            else:
                x = layer(x)
        return x


class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        if use_conv:
            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.dims == 3:
            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
        else:
            x = F.interpolate(x, scale_factor=2, mode="nearest")
        if self.use_conv:
            x = self.conv(x)
        return x


class TransposedUpsample(nn.Module):
    "Learned 2x upsampling without padding"

    def __init__(self, channels, out_channels=None, ks=5):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels

        self.up = nn.ConvTranspose2d(self.channels, self.out_channels, kernel_size=ks, stride=2)

    def forward(self, x):
        return self.up(x)


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
            self.op = conv_nd(dims,self.channels,self.out_channels,3,stride=stride,padding=padding,)
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.
    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
            self,channels,emb_channels,dropout,out_channels=None,use_conv=False,use_scale_shift_norm=False,
            dims=2,use_checkpoint=False,up=False,down=False
        ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm

        self.in_layers = nn.Sequential(
            normalization(channels),
            nn.SiLU(),
            conv_nd(dims, channels, self.out_channels, 3, padding=1),
        )

        self.updown = up or down

        if up:
            self.h_upd = Upsample(channels, False, dims)
            self.x_upd = Upsample(channels, False, dims)
        elif down:
            self.h_upd = Downsample(channels, False, dims)
            self.x_upd = Downsample(channels, False, dims)
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
            linear(emb_channels, 2 * self.out_channels if use_scale_shift_norm else self.out_channels, ),
        )
        self.out_layers = nn.Sequential(
            normalization(self.out_channels),
            nn.SiLU(),
            nn.Dropout(p=dropout),
            zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.
        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        return checkpoint(self._forward, (x, emb), self.parameters(), self.use_checkpoint)

    def _forward(self, x, emb):
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = th.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h


class UNetModel(nn.Module):
    """
    The full UNet model with attention and timestep embedding.
    :param in_channels: channels in the input Tensor.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param attention_resolutions: a collection of downsample rates at which
        attention will take place. May be a set, list, or tuple.
        For example, if this contains 4, then at 4x downsampling, attention
        will be used.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param num_classes: if specified (as an int), then this model will be
        class-conditional with `num_classes` classes.
    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
    :param num_heads: the number of attention heads in each attention layer.
    :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
    :param resblock_updown: use residual blocks for up/downsampling.
    :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

    def __init__(
        self,image_size,in_channels,model_channels,out_channels,num_res_blocks,attention_resolutions,dropout=0,
        channel_mult=(1, 2, 4, 8),conv_resample=True,dims=2,num_classes=None,use_checkpoint=False,use_fp16=False,
        use_bf16=False,num_heads=-1,num_head_channels=-1,num_heads_upsample=-1,use_scale_shift_norm=False,resblock_updown=False,
        use_new_attention_order=False,use_spatial_transformer=False,transformer_depth=1,context_dim=None,
        n_embed=None,legacy=True,disable_self_attentions=None,num_attention_blocks=None,disable_middle_self_attn=False,
        use_linear_in_transformer=False,adm_in_channels=None,
    ):
        super().__init__()
        
        if context_dim is not None:
            from omegaconf.listconfig import ListConfig
            if type(context_dim) == ListConfig:
                context_dim = list(context_dim)
        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        if isinstance(num_res_blocks, int): self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else: self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
        self.dtype = th.float16 if use_fp16 else th.float32
        self.dtype = th.bfloat16 if use_bf16 else self.dtype
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
                        linear(adm_in_channels, time_embed_dim),
                        nn.SiLU(),
                        linear(time_embed_dim, time_embed_dim),
                    )
                )
            else:
                raise ValueError()
            
        self.input_blocks = nn.ModuleList([
            TimestepEmbedSequential(
                conv_nd(dims, in_channels, model_channels, 3, padding=1)
            )
        ])
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    ResBlock(
                        ch,time_embed_dim,dropout,out_channels=mult * model_channels,dims=dims,
                        use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        # num_heads = 1
                        dim_head = (ch // num_heads if use_spatial_transformer else num_head_channels)
                    if disable_self_attentions is not None:
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if num_attention_blocks is None or nr < num_attention_blocks[level]:
                        layers.append(
                            SpatialTransformer(
                                ch,num_heads,dim_head,depth=transformer_depth,context_dim=context_dim,
                                disable_self_attn=disabled_sa,use_linear=use_linear_in_transformer,use_checkpoint=use_checkpoint,
                            )
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,time_embed_dim,dropout,out_channels=out_ch,dims=dims,use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,down=True,
                        )
                        if resblock_updown
                        else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            # num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,time_embed_dim,dropout,dims=dims,
                use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,
            ),
            SpatialTransformer(  # always uses a self-attn
                ch,num_heads,dim_head,depth=transformer_depth,context_dim=context_dim,disable_self_attn=disable_middle_self_attn,
                use_linear=use_linear_in_transformer,use_checkpoint=use_checkpoint,
            ),
            ResBlock(
                ch,time_embed_dim,dropout,dims=dims,use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(self.num_res_blocks[level] + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResBlock(
                        ch + ich,time_embed_dim,dropout,out_channels=model_channels * mult,dims=dims,
                        use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = model_channels * mult
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        # num_heads = 1
                        dim_head = (
                            ch // num_heads
                            if use_spatial_transformer
                            else num_head_channels
                        )
                    if disable_self_attentions is not None:
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if (num_attention_blocks is None or i < num_attention_blocks[level]):
                        layers.append(
                            SpatialTransformer(
                                ch,num_heads,dim_head,depth=transformer_depth,context_dim=context_dim,disable_self_attn=disabled_sa,
                                use_linear=use_linear_in_transformer,use_checkpoint=use_checkpoint,
                            )
                        )
                if level and i == self.num_res_blocks[level]:
                    out_ch = ch
                    layers.append(
                        ResBlock(
                            ch,time_embed_dim,dropout,out_channels=out_ch,dims=dims,
                            use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,up=True,
                        )
                        if resblock_updown
                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch),
            nn.SiLU(),
            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
        )
        if self.predict_codebook_ids:
            self.id_predictor = nn.Sequential(
                normalization(ch),
                conv_nd(dims, model_channels, n_embed, 1),
            )

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

    def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
        """
        Apply the model to an input batch.
        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param context: conditioning plugged in via crossattn
        :return: an [N x C x ...] Tensor of outputs.
        """
        hs = []
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
        emb = self.time_embed(t_emb)
        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)
        
        h = x.type(self.dtype)
        for module in self.input_blocks:
            h = module(h, emb, context)
            hs.append(h)
        h = self.middle_block(h, emb, context)
        for module in self.output_blocks:
            h = th.cat([h, hs.pop()], dim=1)
            h = module(h, emb, context)
        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            return self.id_predictor(h)
        else:
            return self.out(h)