File size: 5,705 Bytes
2171e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Prepare Datasets for OneFormer

- A dataset can be used by accessing [DatasetCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.DatasetCatalog) for its data, or [MetadataCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.MetadataCatalog) for its metadata (class names, etc).
- This document explains how to setup the builtin datasets so they can be used by the above APIs. [Training OneFormer with Custom Datasets](https://github.com/SHI-Labs/OneFormer/tree/main/datasets/custom_datasets) gives a deeper dive on how to train OneFormer with custom datasets.
- Detectron2 has builtin support for a few datasets. The datasets are assumed to exist in a directory specified by the environment variable `DETECTRON2_DATASETS`. Under this directory, detectron2 will look for datasets in the structure described below, if needed.

  ```text
  $DETECTRON2_DATASETS/
    ADEChallengeData2016/
    cityscapes/
    coco/
    mapillary_vistas/
  ```

- You can set the location for builtin datasets by `export DETECTRON2_DATASETS=/path/to/datasets`. If left unset, the default is `./datasets` relative to your current working directory.


## Expected dataset structure for [ADE20K](http://sceneparsing.csail.mit.edu/)

```text
ADEChallengeData2016/
  images/
  annotations/
  objectInfo150.txt
  # download instance annotation
  annotations_instance/
  # generated by prepare_ade20k_sem_seg.py
  annotations_detectron2/
  # below are generated by prepare_ade20k_pan_seg.py
  ade20k_panoptic_{train,val}.json
  ade20k_panoptic_{train,val}/
  # below are generated by prepare_ade20k_ins_seg.py
  ade20k_instance_{train,val}.json
```

- Generate `annotations_detectron2`:

  ```bash
  python datasets/prepare_ade20k_sem_seg.py
  ```

- Install panopticapi by:

  ```bash
  pip install git+https://github.com/cocodataset/panopticapi.git
  ```

- Download the instance annotation from <http://sceneparsing.csail.mit.edu/>:

  ```bash
  wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar
  ```

- Then, run `python datasets/prepare_ade20k_pan_seg.py`, to combine semantic and instance annotations for panoptic annotations.

- Run `python datasets/prepare_ade20k_ins_seg.py`, to extract instance annotations in COCO format.

## Expected dataset structure for [Cityscapes](https://www.cityscapes-dataset.com/downloads/)

```text
cityscapes/
  gtFine/
    train/
      aachen/
        color.png, instanceIds.png, labelIds.png, polygons.json,
        labelTrainIds.png
      ...
    val/
    test/
    # below are generated Cityscapes panoptic annotation
    cityscapes_panoptic_train.json
    cityscapes_panoptic_train/
    cityscapes_panoptic_val.json
    cityscapes_panoptic_val/
    cityscapes_panoptic_test.json
    cityscapes_panoptic_test/
  leftImg8bit/
    train/
    val/
    test/
```

- Login and download the dataset

  ```bash
  wget --keep-session-cookies --save-cookies=cookies.txt --post-data 'username=myusername&password=mypassword&submit=Login' https://www.cityscapes-dataset.com/login/
  ######## gtFine
  wget --load-cookies cookies.txt --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=1
  ######## leftImg8bit
  wget --load-cookies cookies.txt --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=3
  ```

- Install cityscapes scripts by:

  ```bash
  pip install git+https://github.com/mcordts/cityscapesScripts.git
  ```

- To create labelTrainIds.png, first prepare the above structure, then run cityscapesescript with:

  ```bash
  git clone https://github.com/mcordts/cityscapesScripts.git
  ```

  ```bash
  CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesScripts/cityscapesscripts/preparation/createTrainIdLabelImgs.py
  ```

  These files are not needed for instance segmentation.

- To generate Cityscapes panoptic dataset, run cityscapesescript with:

  ```bash
  CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesScripts/cityscapesscripts/preparation/createPanopticImgs.py
  ```

  These files are not needed for semantic and instance segmentation.

## Expected dataset structure for [COCO](https://cocodataset.org/#download)

```text
coco/
  annotations/
    instances_{train,val}2017.json
    panoptic_{train,val}2017.json
    caption_{train,val}2017.json
    # evaluate on instance labels derived from panoptic annotations
    panoptic2instances_val2017.json
  {train,val}2017/
    # image files that are mentioned in the corresponding json
  panoptic_{train,val}2017/  # png annotations
  panoptic_semseg_{train,val}2017/  # generated by the script mentioned below
```

- Install panopticapi by:

  ```bash
  pip install git+https://github.com/cocodataset/panopticapi.git
  ```

- Then, run `python datasets/prepare_coco_semantic_annos_from_panoptic_annos.py`, to extract semantic annotations from panoptic annotations (only used for evaluation).

- Then run the following command to convert the panoptic json into instance json format (used for evaluation on instance segmentation task):

  ```bash
  python datasets/panoptic2detection_coco_format.py --things_only
  ```

## Expected dataset structure for [Mapillary Vistas](https://www.mapillary.com/dataset/vistas)

```text
mapillary_vistas/
  training/
    images/
    instances/
    labels/
    panoptic/
  validation/
    images/
    instances/
    labels/
    panoptic/
  mapillary_vistas_instance_{train,val}.json  # generated by the script mentioned below
```

No preprocessing is needed for Mapillary Vistas on semantic and panoptic segmentation.

We do not evaluate for the instance segmentation task on the Mapillary Vistas dataset.