File size: 10,111 Bytes
2171e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d2dd65
 
 
 
 
 
 
 
 
 
2171e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os

import numpy as np
import torch
import torchvision
from PIL import Image
from pytorch_lightning.callbacks import Callback
import pytorch_lightning as pl
from pytorch_lightning.utilities.distributed import rank_zero_only
from omegaconf import OmegaConf

# class ImageLogger(Callback):
#     def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True,
#                  rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
#                  log_images_kwargs=None):
#         super().__init__()
#         self.rescale = rescale
#         self.batch_freq = batch_frequency
#         self.max_images = max_images
#         if not increase_log_steps:
#             self.log_steps = [self.batch_freq]
#         self.clamp = clamp
#         self.disabled = disabled
#         self.log_on_batch_idx = log_on_batch_idx
#         self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
#         self.log_first_step = log_first_step

#     @rank_zero_only
#     def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx):
#         root = os.path.join(save_dir, "image_log", split)
#         for k in images:
#             grid = torchvision.utils.make_grid(images[k], nrow=4)
#             if self.rescale:
#                 grid = (grid + 1.0) / 2.0  # -1,1 -> 0,1; c,h,w
#             grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
#             grid = grid.numpy()
#             grid = (grid * 255).astype(np.uint8)
#             filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx)
#             path = os.path.join(root, filename)
#             os.makedirs(os.path.split(path)[0], exist_ok=True)
#             Image.fromarray(grid).save(path)

#     def log_img(self, pl_module, batch, batch_idx, split="train"):
#         check_idx = batch_idx  # if self.log_on_batch_idx else pl_module.global_step
#         if (self.check_frequency(check_idx) and  # batch_idx % self.batch_freq == 0
#                 hasattr(pl_module, "log_images") and
#                 callable(pl_module.log_images) and
#                 self.max_images > 0):
#             logger = type(pl_module.logger)

#             is_train = pl_module.training
#             if is_train:
#                 pl_module.eval()

#             with torch.no_grad():
#                 images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)

#             for k in images:
#                 N = min(images[k].shape[0], self.max_images)
#                 images[k] = images[k][:N]
#                 if isinstance(images[k], torch.Tensor):
#                     images[k] = images[k].detach().cpu()
#                     if self.clamp:
#                         images[k] = torch.clamp(images[k], -1., 1.)

#             self.log_local(pl_module.logger.save_dir, split, images,
#                            pl_module.global_step, pl_module.current_epoch, batch_idx)

#             if is_train:
#                 pl_module.train()

#     def check_frequency(self, check_idx):
#         return check_idx % self.batch_freq == 0

#     def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
#         if not self.disabled:
#             self.log_img(pl_module, batch, batch_idx, split="train")


class SetupCallback(Callback):
    def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config):
        super().__init__()
        self.resume = resume
        self.now = now
        self.logdir = logdir
        self.ckptdir = ckptdir
        self.cfgdir = cfgdir
        self.config = config
        self.lightning_config = lightning_config

    def on_keyboard_interrupt(self, trainer, pl_module):
        if trainer.global_rank == 0:
            print("Summoning checkpoint.")
            ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
            trainer.save_checkpoint(ckpt_path)

    def on_pretrain_routine_start(self, trainer, pl_module):
        if trainer.global_rank == 0:
            # Create logdirs and save configs
            os.makedirs(self.logdir, exist_ok=True)
            os.makedirs(self.ckptdir, exist_ok=True)
            os.makedirs(self.cfgdir, exist_ok=True)

            if "callbacks" in self.lightning_config:
                if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']:
                    os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True)
            print("Project config")
            print(OmegaConf.to_yaml(self.config))
            OmegaConf.save(self.config,
                           os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)))

            print("Lightning config")
            print(OmegaConf.to_yaml(self.lightning_config))
            OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}),
                           os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)))

        # else:
        #     # ModelCheckpoint callback created log directory --- remove it
        #     if not self.resume and os.path.exists(self.logdir):
        #         dst, name = os.path.split(self.logdir)
        #         dst = os.path.join(dst, "child_runs", name)
        #         os.makedirs(os.path.split(dst)[0], exist_ok=True)
        #         try:
        #             os.rename(self.logdir, dst)
        #         except FileNotFoundError:
        #             pass


class ImageLogger(Callback):
    def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True,
                 rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
                 log_images_kwargs=None):
        super().__init__()
        self.rescale = rescale
        self.batch_freq = batch_frequency
        self.max_images = max_images
        self.logger_log_images = {
            pl.loggers.TestTubeLogger: self._testtube,
        }
        self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)]
        if not increase_log_steps:
            self.log_steps = [self.batch_freq]
        self.clamp = clamp
        self.disabled = disabled
        self.log_on_batch_idx = log_on_batch_idx
        self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
        self.log_first_step = log_first_step

    @rank_zero_only
    def _testtube(self, pl_module, images, batch_idx, split):
        for k in images:
            grid = torchvision.utils.make_grid(images[k])
            grid = (grid + 1.0) / 2.0  # -1,1 -> 0,1; c,h,w

            tag = f"{split}/{k}"
            pl_module.logger.experiment.add_image(
                tag, grid,
                global_step=pl_module.global_step)

    @rank_zero_only
    def log_local(self, save_dir, split, images,
                  global_step, current_epoch, batch_idx):
        root = os.path.join(save_dir, "images", split)
        for k in images:
            grid = torchvision.utils.make_grid(images[k], nrow=4)
            if self.rescale:
                grid = (grid + 1.0) / 2.0  # -1,1 -> 0,1; c,h,w
            grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
            grid = grid.numpy()
            grid = (grid * 255).astype(np.uint8)
            filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
                k,
                global_step,
                current_epoch,
                batch_idx)
            path = os.path.join(root, filename)
            os.makedirs(os.path.split(path)[0], exist_ok=True)
            Image.fromarray(grid).save(path)

    def log_img(self, pl_module, batch, batch_idx, split="train"):
        check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
        if (self.check_frequency(check_idx) and  # batch_idx % self.batch_freq == 0
                hasattr(pl_module, "log_images") and
                callable(pl_module.log_images) and
                self.max_images > 0):
            logger = type(pl_module.logger)

            is_train = pl_module.training
            if is_train:
                pl_module.eval()

            with torch.no_grad():
                images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)

            for k in images:
                N = min(images[k].shape[0], self.max_images)
                images[k] = images[k][:N]
                if isinstance(images[k], torch.Tensor):
                    images[k] = images[k].detach().cpu()
                    if self.clamp:
                        images[k] = torch.clamp(images[k], -1., 1.)

            self.log_local(pl_module.logger.save_dir, split, images,
                           pl_module.global_step, pl_module.current_epoch, batch_idx)

            logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None)
            logger_log_images(pl_module, images, pl_module.global_step, split)

            if is_train:
                pl_module.train()

    def check_frequency(self, check_idx):
        if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
                check_idx > 0 or self.log_first_step):
            try:
                self.log_steps.pop(0)
            except IndexError as e:
                print(e)
                pass
            return True
        return False

    def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
        if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
            self.log_img(pl_module, batch, batch_idx, split="train")

    def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
        # if not self.disabled and pl_module.global_step > 0:
        #     self.log_img(pl_module, batch, batch_idx, split="val")
        # if hasattr(pl_module, 'calibrate_grad_norm'):
        #     if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0:
        #         self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
        pass