PBJ's picture
Upload 2 files
35a51d6
# Importing necessary libraries
import streamlit as st
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import re
st.title('Toxic Comment Classification')
comment = st.text_area("Enter Your Text", "Type Here")
comment_input = []
comment_input.append(comment)
test_df = pd.DataFrame()
test_df['comment_text'] = comment_input
cols = {'toxic':[0], 'severe_toxic':[0], 'obscene':[0], 'threat':[0], 'insult':[0], 'identity_hate':[0], 'non_toxic': [0]}
for key in cols.keys():
test_df[key] = cols[key]
test_df = test_df.reset_index()
test_df.drop(columns=["index"], inplace=True)
# Data Cleaning and Preprocessing
# creating copy of data for data cleaning and preprocessing
cleaned_data = test_df.copy()
# Removing Hyperlinks from text
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"https?://\S+|www\.\S+","",x) )
# Removing emojis from text
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub("["
u"\U0001F600-\U0001F64F"
u"\U0001F300-\U0001F5FF"
u"\U0001F680-\U0001F6FF"
u"\U0001F1E0-\U0001F1FF"
u"\U00002702-\U000027B0"
u"\U000024C2-\U0001F251"
"]+","", x, flags=re.UNICODE))
# Removing IP addresses from text
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}","",x))
# Removing html tags from text
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"<.*?>","",x))
# There are some comments which contain double quoted words like --> ""words"" we will convert these to --> "words"
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"\"\"", "\"",x)) # replacing "" with "
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"^\"", "",x)) # removing quotation from start and the end of the string
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"\"$", "",x))
# Removing Punctuation / Special characters (;:'".?@!%&*+) which appears more than twice in the text
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"[^a-zA-Z0-9\s][^a-zA-Z0-9\s]+", " ",x))
# Removing Special characters
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"[^a-zA-Z0-9\s\"\',:;?!.()]", " ",x))
# Removing extra spaces in text
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"\s\s+", " ",x))
Final_data = cleaned_data.copy()
# Model Building
from transformers import DistilBertTokenizer
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
# Using Pretrained DistilBertTokenizer
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
# Creating Dataset class for Toxic comments and Labels
class Toxic_Dataset(Dataset):
def __init__(self, Comments_, Labels_):
self.comments = Comments_.copy()
self.labels = Labels_.copy()
self.comments["comment_text"] = self.comments["comment_text"].map(lambda x: tokenizer(x, padding="max_length", truncation=True, return_tensors="pt"))
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
comment = self.comments.loc[idx,"comment_text"]
label = np.array(self.labels.loc[idx,:])
return comment, label
X_test = pd.DataFrame(test_df.iloc[:, 0])
Y_test = test_df.iloc[:, 1:]
Test_data = Toxic_Dataset(X_test, Y_test)
Test_Loader = DataLoader(Test_data, shuffle=False)
# Loading pre-trained weights of DistilBert model for sequence classification
# and changing classifiers output to 7 because we have 7 labels to classify.
# DistilBERT
from transformers import DistilBertForSequenceClassification
Distil_bert = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
Distil_bert.classifier = nn.Sequential(
nn.Linear(768,7),
nn.Sigmoid()
)
# print(Distil_bert)
# Instantiating the model and loading the weights
model = Distil_bert
model.to('cpu')
model = torch.load('dsbert_toxic_balanced.pt', map_location=torch.device('cpu'))
# Making Predictions
for comments, labels in Test_Loader:
labels = labels.to('cpu')
labels = labels.float()
masks = comments['attention_mask'].squeeze(1).to('cpu')
input_ids = comments['input_ids'].squeeze(1).to('cpu')
output = model(input_ids, masks)
op = output.logits
res = []
for i in range(7):
res.append(op[0, i])
# print(res)
preds = []
for i in range(len(res)):
preds.append(res[i].tolist())
classes = ['Toxic', 'Severe Toxic', 'Obscene', 'Threat', 'Insult', 'Identity Hate', 'Non Toxic']
if st.button('Classify'):
for i in range(len(res)):
st.write(f"{classes[i]} : {round(preds[i], 2)}\n")
st.success('These are the outputs')