Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +136 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Importing necessary libraries
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import re
|
8 |
+
|
9 |
+
st.title('Toxic Comment Classification')
|
10 |
+
comment = st.text_area("Enter Your Text", "Type Here")
|
11 |
+
|
12 |
+
comment_input = []
|
13 |
+
comment_input.append(comment)
|
14 |
+
test_df = pd.DataFrame()
|
15 |
+
test_df['comment_text'] = comment_input
|
16 |
+
cols = {'toxic':[0], 'severe_toxic':[0], 'obscene':[0], 'threat':[0], 'insult':[0], 'identity_hate':[0]}
|
17 |
+
for key in cols.keys():
|
18 |
+
test_df[key] = cols[key]
|
19 |
+
test_df = test_df.reset_index()
|
20 |
+
test_df.drop(columns=["index"], inplace=True)
|
21 |
+
|
22 |
+
# Data Cleaning and Preprocessing
|
23 |
+
# creating copy of data for data cleaning and preprocessing
|
24 |
+
cleaned_data = test_df.copy()
|
25 |
+
|
26 |
+
# Removing Hyperlinks from text
|
27 |
+
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"https?://\S+|www\.\S+","",x) )
|
28 |
+
|
29 |
+
# Removing emojis from text
|
30 |
+
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub("["
|
31 |
+
u"\U0001F600-\U0001F64F"
|
32 |
+
u"\U0001F300-\U0001F5FF"
|
33 |
+
u"\U0001F680-\U0001F6FF"
|
34 |
+
u"\U0001F1E0-\U0001F1FF"
|
35 |
+
u"\U00002702-\U000027B0"
|
36 |
+
u"\U000024C2-\U0001F251"
|
37 |
+
"]+","", x, flags=re.UNICODE))
|
38 |
+
|
39 |
+
# Removing IP addresses from text
|
40 |
+
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}","",x))
|
41 |
+
|
42 |
+
# Removing html tags from text
|
43 |
+
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"<.*?>","",x))
|
44 |
+
|
45 |
+
# There are some comments which contain double quoted words like --> ""words"" we will convert these to --> "words"
|
46 |
+
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"\"\"", "\"",x)) # replacing "" with "
|
47 |
+
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"^\"", "",x)) # removing quotation from start and the end of the string
|
48 |
+
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"\"$", "",x))
|
49 |
+
|
50 |
+
# Removing Punctuation / Special characters (;:'".?@!%&*+) which appears more than twice in the text
|
51 |
+
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"[^a-zA-Z0-9\s][^a-zA-Z0-9\s]+", " ",x))
|
52 |
+
|
53 |
+
# Removing Special characters
|
54 |
+
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"[^a-zA-Z0-9\s\"\',:;?!.()]", " ",x))
|
55 |
+
|
56 |
+
# Removing extra spaces in text
|
57 |
+
cleaned_data["comment_text"] = cleaned_data["comment_text"].map(lambda x: re.sub(r"\s\s+", " ",x))
|
58 |
+
|
59 |
+
Final_data = cleaned_data.copy()
|
60 |
+
|
61 |
+
# Model Building
|
62 |
+
from transformers import DistilBertTokenizer
|
63 |
+
import torch
|
64 |
+
import torch.nn as nn
|
65 |
+
from torch.utils.data import DataLoader, Dataset
|
66 |
+
|
67 |
+
# Using Pretrained DistilBertTokenizer
|
68 |
+
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
69 |
+
|
70 |
+
# Creating Dataset class for Toxic comments and Labels
|
71 |
+
class Toxic_Dataset(Dataset):
|
72 |
+
def __init__(self, Comments_, Labels_):
|
73 |
+
self.comments = Comments_.copy()
|
74 |
+
self.labels = Labels_.copy()
|
75 |
+
|
76 |
+
self.comments["comment_text"] = self.comments["comment_text"].map(lambda x: tokenizer(x, padding="max_length", truncation=True, return_tensors="pt"))
|
77 |
+
|
78 |
+
def __len__(self):
|
79 |
+
return len(self.labels)
|
80 |
+
|
81 |
+
def __getitem__(self, idx):
|
82 |
+
comment = self.comments.loc[idx,"comment_text"]
|
83 |
+
label = np.array(self.labels.loc[idx,:])
|
84 |
+
|
85 |
+
return comment, label
|
86 |
+
|
87 |
+
X_test = pd.DataFrame(test_df.iloc[:, 0])
|
88 |
+
Y_test = test_df.iloc[:, 1:]
|
89 |
+
Test_data = Toxic_Dataset(X_test, Y_test)
|
90 |
+
Test_Loader = DataLoader(Test_data, shuffle=False)
|
91 |
+
|
92 |
+
# Loading pre-trained weights of DistilBert model for sequence classification
|
93 |
+
# and changing classifiers output to 6 because we have 6 labels to classify.
|
94 |
+
# DistilBERT
|
95 |
+
|
96 |
+
from transformers import DistilBertForSequenceClassification
|
97 |
+
|
98 |
+
Distil_bert = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
|
99 |
+
|
100 |
+
Distil_bert.classifier = nn.Sequential(
|
101 |
+
nn.Linear(768,6),
|
102 |
+
nn.Sigmoid()
|
103 |
+
)
|
104 |
+
# print(Distil_bert)
|
105 |
+
|
106 |
+
# Instantiating the model and loading the weights
|
107 |
+
model = Distil_bert
|
108 |
+
model.to('cpu')
|
109 |
+
model = torch.load('dsbert_toxic.pt', map_location=torch.device('cpu'))
|
110 |
+
|
111 |
+
# Making Predictions
|
112 |
+
for comments, labels in Test_Loader:
|
113 |
+
labels = labels.to('cpu')
|
114 |
+
labels = labels.float()
|
115 |
+
masks = comments['attention_mask'].squeeze(1).to('cpu')
|
116 |
+
input_ids = comments['input_ids'].squeeze(1).to('cpu')
|
117 |
+
|
118 |
+
output = model(input_ids, masks)
|
119 |
+
op = output.logits
|
120 |
+
|
121 |
+
res = []
|
122 |
+
for i in range(6):
|
123 |
+
res.append(op[0, i])
|
124 |
+
# print(res)
|
125 |
+
|
126 |
+
preds = []
|
127 |
+
|
128 |
+
for i in range(len(res)):
|
129 |
+
preds.append(res[i].tolist())
|
130 |
+
|
131 |
+
|
132 |
+
if st.button('Classify'):
|
133 |
+
for i in range(len(res)):
|
134 |
+
st.write(f"{Y_test.columns[i]} : {preds[i]}\n")
|
135 |
+
st.success('These are the outputs')
|
136 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
matplotlib==3.5.1
|
2 |
+
numpy==1.21.5
|
3 |
+
pandas==1.4.3
|
4 |
+
streamlit==1.12.0
|
5 |
+
torch==1.12.1+cpu
|
6 |
+
transformers==4.21.1
|