PBJ commited on
Commit
c492331
Β·
1 Parent(s): d4df78a

Create 2_πŸ“·_Webcamera.py

Browse files
Files changed (1) hide show
  1. pages/2_πŸ“·_Webcamera.py +67 -0
pages/2_πŸ“·_Webcamera.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_webrtc import webrtc_streamer
3
+ import av
4
+ import cv2
5
+ import time
6
+ import mediapipe as mp
7
+ import numpy as np
8
+ import pandas as pd
9
+ from mediapipe_functions import *
10
+ from utils import *
11
+ import tensorflow as tf
12
+
13
+ st.title("Webcamera")
14
+ st.write("Steps to use: \n1. Click on Start button.\n2. To stop the video when done, press Stop. \n\n The output will be displayed in about 40 secs.")
15
+
16
+ class VideoProcessor:
17
+ def __init__(self) -> None:
18
+ self.threshold1 = 100
19
+ self.threshold2 = 200
20
+ self.my_list = []
21
+
22
+ def recv(self, frame):
23
+ img = frame.to_ndarray(format="bgr24")
24
+ self.my_list.append(img)
25
+ return av.VideoFrame.from_ndarray(img, format="bgr24")
26
+
27
+ # Create the video processor instance
28
+ video_processor = VideoProcessor()
29
+
30
+ ctx = webrtc_streamer(key="sample", video_processor_factory=lambda: video_processor)
31
+
32
+ time.sleep(10)
33
+ st.write(len(ctx.video_processor.my_list))
34
+
35
+ # Access the frames list after the webrtc_streamer function has finished running
36
+ frames_list = ctx.video_processor.my_list
37
+
38
+ # # Display the last frame
39
+ # if frames_list:
40
+ # st.image(frames_list[-1], channels="BGR")
41
+ st.write("Running...")
42
+
43
+ # Continuing with the code for inference pipeline
44
+ final_landmarks = extract_landmarks(frames_list)
45
+ df1 = pd.DataFrame(final_landmarks,columns=['x','y','z'])
46
+ ROWS_PER_FRAME = 543
47
+
48
+ # Loading data
49
+ st.write(len(frames_list))
50
+ test_df = load_relevant_data_subset(df1, ROWS_PER_FRAME=ROWS_PER_FRAME)
51
+ test_df = tf.convert_to_tensor(test_df)
52
+
53
+ # Inference
54
+ interpreter = tf.lite.Interpreter("models/model.tflite")
55
+ prediction_fn = interpreter.get_signature_runner("serving_default")
56
+ output = prediction_fn(inputs=test_df)
57
+ sign = np.argmax(output["outputs"])
58
+ sign_json=pd.read_json("sign_to_prediction_index_map.json",typ='series')
59
+ sign_df=pd.DataFrame(sign_json)
60
+ sign_df.iloc[sign]
61
+ top_indices = np.argsort(output['outputs'])[::-1][:5]
62
+ top_values = output['outputs'][top_indices]
63
+
64
+ output_df = sign_df.iloc[top_indices]
65
+ output_df['Value'] = top_values
66
+ output_df.rename(columns = {0:'Index'}, inplace = True)
67
+ st.write(output_df)