Update pages/2_π·_Webcamera.py
Browse files- pages/2_π·_Webcamera.py +61 -55
pages/2_π·_Webcamera.py
CHANGED
@@ -1,67 +1,73 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from streamlit_webrtc import webrtc_streamer
|
3 |
-
import av
|
4 |
-
import cv2
|
5 |
-
import time
|
6 |
-
import mediapipe as mp
|
7 |
-
import numpy as np
|
8 |
-
import pandas as pd
|
9 |
-
from mediapipe_functions import *
|
10 |
-
from utils import *
|
11 |
-
import tensorflow as tf
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
self.my_list = []
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
self.my_list.append(img)
|
25 |
-
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
26 |
|
27 |
-
#
|
28 |
-
video_processor = VideoProcessor()
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
#
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
# #
|
39 |
-
#
|
40 |
-
#
|
41 |
-
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
interpreter = tf.lite.Interpreter("models/model.tflite")
|
55 |
-
prediction_fn = interpreter.get_signature_runner("serving_default")
|
56 |
-
output = prediction_fn(inputs=test_df)
|
57 |
-
sign = np.argmax(output["outputs"])
|
58 |
-
sign_json=pd.read_json("sign_to_prediction_index_map.json",typ='series')
|
59 |
-
sign_df=pd.DataFrame(sign_json)
|
60 |
-
sign_df.iloc[sign]
|
61 |
-
top_indices = np.argsort(output['outputs'])[::-1][:5]
|
62 |
-
top_values = output['outputs'][top_indices]
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
output_df.rename(columns = {0:'Index'}, inplace = True)
|
67 |
-
st.write(output_df)
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# from streamlit_webrtc import webrtc_streamer
|
3 |
+
# import av
|
4 |
+
# import cv2
|
5 |
+
# import time
|
6 |
+
# import mediapipe as mp
|
7 |
+
# import numpy as np
|
8 |
+
# import pandas as pd
|
9 |
+
# from mediapipe_functions import *
|
10 |
+
# from utils import *
|
11 |
+
# import tensorflow as tf
|
12 |
+
|
13 |
+
# st.title("Webcamera")
|
14 |
+
# st.write("Steps to use: \n1. Click on Start button.\n2. To stop the video when done, press Stop. \n\n The output will be displayed in about 40 secs.")
|
15 |
|
16 |
+
# class VideoProcessor:
|
17 |
+
# def __init__(self) -> None:
|
18 |
+
# self.threshold1 = 100
|
19 |
+
# self.threshold2 = 200
|
20 |
+
# self.my_list = []
|
21 |
|
22 |
+
# def recv(self, frame):
|
23 |
+
# img = frame.to_ndarray(format="bgr24")
|
24 |
+
# self.my_list.append(img)
|
25 |
+
# return av.VideoFrame.from_ndarray(img, format="bgr24")
|
|
|
26 |
|
27 |
+
# # Create the video processor instance
|
28 |
+
# video_processor = VideoProcessor()
|
|
|
|
|
29 |
|
30 |
+
# ctx = webrtc_streamer(key="sample", video_processor_factory=lambda: video_processor)
|
|
|
31 |
|
32 |
+
# time.sleep(10)
|
33 |
+
# st.write(len(ctx.video_processor.my_list))
|
34 |
|
35 |
+
# # Access the frames list after the webrtc_streamer function has finished running
|
36 |
+
# frames_list = ctx.video_processor.my_list
|
37 |
|
38 |
+
# # # Display the last frame
|
39 |
+
# # if frames_list:
|
40 |
+
# # st.image(frames_list[-1], channels="BGR")
|
41 |
+
# st.write("Running...")
|
42 |
|
43 |
+
# # Continuing with the code for inference pipeline
|
44 |
+
# final_landmarks = extract_landmarks(frames_list)
|
45 |
+
# df1 = pd.DataFrame(final_landmarks,columns=['x','y','z'])
|
46 |
+
# ROWS_PER_FRAME = 543
|
47 |
|
48 |
+
# # Loading data
|
49 |
+
# st.write(len(frames_list))
|
50 |
+
# test_df = load_relevant_data_subset(df1, ROWS_PER_FRAME=ROWS_PER_FRAME)
|
51 |
+
# test_df = tf.convert_to_tensor(test_df)
|
52 |
|
53 |
+
# # Inference
|
54 |
+
# interpreter = tf.lite.Interpreter("models/model.tflite")
|
55 |
+
# prediction_fn = interpreter.get_signature_runner("serving_default")
|
56 |
+
# output = prediction_fn(inputs=test_df)
|
57 |
+
# sign = np.argmax(output["outputs"])
|
58 |
+
# sign_json=pd.read_json("sign_to_prediction_index_map.json",typ='series')
|
59 |
+
# sign_df=pd.DataFrame(sign_json)
|
60 |
+
# sign_df.iloc[sign]
|
61 |
+
# top_indices = np.argsort(output['outputs'])[::-1][:5]
|
62 |
+
# top_values = output['outputs'][top_indices]
|
63 |
+
|
64 |
+
# output_df = sign_df.iloc[top_indices]
|
65 |
+
# output_df['Value'] = top_values
|
66 |
+
# output_df.rename(columns = {0:'Index'}, inplace = True)
|
67 |
+
# st.write(output_df)
|
68 |
+
import streamlit as st
|
69 |
|
70 |
+
picture = st.camera_input("Take a picture")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
if picture:
|
73 |
+
st.image(picture)
|
|
|
|