Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- requirements.txt +17 -0
- web_app.py +367 -0
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
PIL
|
3 |
+
cv2
|
4 |
+
os
|
5 |
+
glob
|
6 |
+
time
|
7 |
+
numpy
|
8 |
+
pathlib
|
9 |
+
tqdm.notebook
|
10 |
+
matplotlib.pyplot
|
11 |
+
skimage.color
|
12 |
+
torch
|
13 |
+
torchvision
|
14 |
+
torchvision.utils
|
15 |
+
torch.utils.data
|
16 |
+
torchinfo
|
17 |
+
fastai==2.4
|
web_app.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import cv2 as cv
|
4 |
+
|
5 |
+
# ---------Backend--------------------------------------------------------------
|
6 |
+
|
7 |
+
import os
|
8 |
+
import glob
|
9 |
+
import time
|
10 |
+
import numpy as np
|
11 |
+
from PIL import Image
|
12 |
+
from pathlib import Path
|
13 |
+
from tqdm.notebook import tqdm
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
from skimage.color import rgb2lab, lab2rgb
|
16 |
+
|
17 |
+
# pip install fastai==2.4
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn, optim
|
21 |
+
from torchvision import transforms
|
22 |
+
from torchvision.utils import make_grid
|
23 |
+
from torch.utils.data import Dataset, DataLoader
|
24 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
+
use_colab = None
|
26 |
+
|
27 |
+
SIZE = 256
|
28 |
+
class ColorizationDataset(Dataset):
|
29 |
+
def __init__(self, paths, split='train'):
|
30 |
+
if split == 'train':
|
31 |
+
self.transforms = transforms.Compose([
|
32 |
+
transforms.Resize((SIZE, SIZE), Image.BICUBIC),
|
33 |
+
transforms.RandomHorizontalFlip(), # A little data augmentation!
|
34 |
+
])
|
35 |
+
elif split == 'val':
|
36 |
+
self.transforms = transforms.Resize((SIZE, SIZE), Image.BICUBIC)
|
37 |
+
|
38 |
+
self.split = split
|
39 |
+
self.size = SIZE
|
40 |
+
self.paths = paths
|
41 |
+
|
42 |
+
def __getitem__(self, idx):
|
43 |
+
img = Image.open(self.paths[idx]).convert("RGB")
|
44 |
+
img = self.transforms(img)
|
45 |
+
img = np.array(img)
|
46 |
+
img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b
|
47 |
+
img_lab = transforms.ToTensor()(img_lab)
|
48 |
+
L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1
|
49 |
+
ab = img_lab[[1, 2], ...] / 110. # Between -1 and 1
|
50 |
+
|
51 |
+
return {'L': L, 'ab': ab}
|
52 |
+
|
53 |
+
def __len__(self):
|
54 |
+
return len(self.paths)
|
55 |
+
|
56 |
+
def make_dataloaders(batch_size=16, n_workers=4, pin_memory=True, **kwargs): # A handy function to make our dataloaders
|
57 |
+
dataset = ColorizationDataset(**kwargs)
|
58 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
|
59 |
+
pin_memory=pin_memory)
|
60 |
+
return dataloader
|
61 |
+
|
62 |
+
class UnetBlock(nn.Module):
|
63 |
+
def __init__(self, nf, ni, submodule=None, input_c=None, dropout=False,
|
64 |
+
innermost=False, outermost=False):
|
65 |
+
super().__init__()
|
66 |
+
self.outermost = outermost
|
67 |
+
if input_c is None: input_c = nf
|
68 |
+
downconv = nn.Conv2d(input_c, ni, kernel_size=4,
|
69 |
+
stride=2, padding=1, bias=False)
|
70 |
+
downrelu = nn.LeakyReLU(0.2, True)
|
71 |
+
downnorm = nn.BatchNorm2d(ni)
|
72 |
+
uprelu = nn.ReLU(True)
|
73 |
+
upnorm = nn.BatchNorm2d(nf)
|
74 |
+
|
75 |
+
if outermost:
|
76 |
+
upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
|
77 |
+
stride=2, padding=1)
|
78 |
+
down = [downconv]
|
79 |
+
up = [uprelu, upconv, nn.Tanh()]
|
80 |
+
model = down + [submodule] + up
|
81 |
+
elif innermost:
|
82 |
+
upconv = nn.ConvTranspose2d(ni, nf, kernel_size=4,
|
83 |
+
stride=2, padding=1, bias=False)
|
84 |
+
down = [downrelu, downconv]
|
85 |
+
up = [uprelu, upconv, upnorm]
|
86 |
+
model = down + up
|
87 |
+
else:
|
88 |
+
upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
|
89 |
+
stride=2, padding=1, bias=False)
|
90 |
+
down = [downrelu, downconv, downnorm]
|
91 |
+
up = [uprelu, upconv, upnorm]
|
92 |
+
if dropout: up += [nn.Dropout(0.5)]
|
93 |
+
model = down + [submodule] + up
|
94 |
+
self.model = nn.Sequential(*model)
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
if self.outermost:
|
98 |
+
return self.model(x)
|
99 |
+
else:
|
100 |
+
return torch.cat([x, self.model(x)], 1)
|
101 |
+
|
102 |
+
class Unet(nn.Module):
|
103 |
+
def __init__(self, input_c=1, output_c=2, n_down=8, num_filters=64):
|
104 |
+
super().__init__()
|
105 |
+
unet_block = UnetBlock(num_filters * 8, num_filters * 8, innermost=True)
|
106 |
+
for _ in range(n_down - 5):
|
107 |
+
unet_block = UnetBlock(num_filters * 8, num_filters * 8, submodule=unet_block, dropout=True)
|
108 |
+
out_filters = num_filters * 8
|
109 |
+
for _ in range(3):
|
110 |
+
unet_block = UnetBlock(out_filters // 2, out_filters, submodule=unet_block)
|
111 |
+
out_filters //= 2
|
112 |
+
self.model = UnetBlock(output_c, out_filters, input_c=input_c, submodule=unet_block, outermost=True)
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
return self.model(x)
|
116 |
+
|
117 |
+
class PatchDiscriminator(nn.Module):
|
118 |
+
def __init__(self, input_c, num_filters=64, n_down=3):
|
119 |
+
super().__init__()
|
120 |
+
model = [self.get_layers(input_c, num_filters, norm=False)]
|
121 |
+
model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down-1) else 2)
|
122 |
+
for i in range(n_down)] # the 'if' statement is taking care of not using
|
123 |
+
# stride of 2 for the last block in this loop
|
124 |
+
model += [self.get_layers(num_filters * 2 ** n_down, 1, s=1, norm=False, act=False)] # Make sure to not use normalization or
|
125 |
+
# activation for the last layer of the model
|
126 |
+
self.model = nn.Sequential(*model)
|
127 |
+
|
128 |
+
def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True, act=True): # when needing to make some repeatitive blocks of layers,
|
129 |
+
layers = [nn.Conv2d(ni, nf, k, s, p, bias=not norm)] # it's always helpful to make a separate method for that purpose
|
130 |
+
if norm: layers += [nn.BatchNorm2d(nf)]
|
131 |
+
if act: layers += [nn.LeakyReLU(0.2, True)]
|
132 |
+
return nn.Sequential(*layers)
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
return self.model(x)
|
136 |
+
|
137 |
+
class GANLoss(nn.Module):
|
138 |
+
def __init__(self, gan_mode='vanilla', real_label=1.0, fake_label=0.0):
|
139 |
+
super().__init__()
|
140 |
+
self.register_buffer('real_label', torch.tensor(real_label))
|
141 |
+
self.register_buffer('fake_label', torch.tensor(fake_label))
|
142 |
+
if gan_mode == 'vanilla':
|
143 |
+
self.loss = nn.BCEWithLogitsLoss()
|
144 |
+
elif gan_mode == 'lsgan':
|
145 |
+
self.loss = nn.MSELoss()
|
146 |
+
|
147 |
+
def get_labels(self, preds, target_is_real):
|
148 |
+
if target_is_real:
|
149 |
+
labels = self.real_label
|
150 |
+
else:
|
151 |
+
labels = self.fake_label
|
152 |
+
return labels.expand_as(preds)
|
153 |
+
|
154 |
+
def __call__(self, preds, target_is_real):
|
155 |
+
labels = self.get_labels(preds, target_is_real)
|
156 |
+
loss = self.loss(preds, labels)
|
157 |
+
return loss
|
158 |
+
|
159 |
+
def init_weights(net, init='norm', gain=0.02):
|
160 |
+
|
161 |
+
def init_func(m):
|
162 |
+
classname = m.__class__.__name__
|
163 |
+
if hasattr(m, 'weight') and 'Conv' in classname:
|
164 |
+
if init == 'norm':
|
165 |
+
nn.init.normal_(m.weight.data, mean=0.0, std=gain)
|
166 |
+
elif init == 'xavier':
|
167 |
+
nn.init.xavier_normal_(m.weight.data, gain=gain)
|
168 |
+
elif init == 'kaiming':
|
169 |
+
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
|
170 |
+
|
171 |
+
if hasattr(m, 'bias') and m.bias is not None:
|
172 |
+
nn.init.constant_(m.bias.data, 0.0)
|
173 |
+
elif 'BatchNorm2d' in classname:
|
174 |
+
nn.init.normal_(m.weight.data, 1., gain)
|
175 |
+
nn.init.constant_(m.bias.data, 0.)
|
176 |
+
|
177 |
+
net.apply(init_func)
|
178 |
+
print(f"model initialized with {init} initialization")
|
179 |
+
return net
|
180 |
+
|
181 |
+
def init_model(model, device):
|
182 |
+
model = model.to(device)
|
183 |
+
model = init_weights(model)
|
184 |
+
return model
|
185 |
+
|
186 |
+
class MainModel(nn.Module):
|
187 |
+
def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4,
|
188 |
+
beta1=0.5, beta2=0.999, lambda_L1=100.):
|
189 |
+
super().__init__()
|
190 |
+
|
191 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
192 |
+
self.lambda_L1 = lambda_L1
|
193 |
+
|
194 |
+
if net_G is None:
|
195 |
+
self.net_G = init_model(Unet(input_c=1, output_c=2, n_down=8, num_filters=64), self.device)
|
196 |
+
else:
|
197 |
+
self.net_G = net_G.to(self.device)
|
198 |
+
self.net_D = init_model(PatchDiscriminator(input_c=3, n_down=3, num_filters=64), self.device)
|
199 |
+
self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device)
|
200 |
+
self.L1criterion = nn.L1Loss()
|
201 |
+
self.opt_G = optim.Adam(self.net_G.parameters(), lr=lr_G, betas=(beta1, beta2))
|
202 |
+
self.opt_D = optim.Adam(self.net_D.parameters(), lr=lr_D, betas=(beta1, beta2))
|
203 |
+
|
204 |
+
def set_requires_grad(self, model, requires_grad=True):
|
205 |
+
for p in model.parameters():
|
206 |
+
p.requires_grad = requires_grad
|
207 |
+
|
208 |
+
def setup_input(self, data):
|
209 |
+
self.L = data['L'].to(self.device)
|
210 |
+
self.ab = data['ab'].to(self.device)
|
211 |
+
|
212 |
+
def forward(self):
|
213 |
+
self.fake_color = self.net_G(self.L)
|
214 |
+
|
215 |
+
def backward_D(self):
|
216 |
+
fake_image = torch.cat([self.L, self.fake_color], dim=1)
|
217 |
+
fake_preds = self.net_D(fake_image.detach())
|
218 |
+
self.loss_D_fake = self.GANcriterion(fake_preds, False)
|
219 |
+
real_image = torch.cat([self.L, self.ab], dim=1)
|
220 |
+
real_preds = self.net_D(real_image)
|
221 |
+
self.loss_D_real = self.GANcriterion(real_preds, True)
|
222 |
+
self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
|
223 |
+
self.loss_D.backward()
|
224 |
+
|
225 |
+
def backward_G(self):
|
226 |
+
fake_image = torch.cat([self.L, self.fake_color], dim=1)
|
227 |
+
fake_preds = self.net_D(fake_image)
|
228 |
+
self.loss_G_GAN = self.GANcriterion(fake_preds, True)
|
229 |
+
self.loss_G_L1 = self.L1criterion(self.fake_color, self.ab) * self.lambda_L1
|
230 |
+
self.loss_G = self.loss_G_GAN + self.loss_G_L1
|
231 |
+
self.loss_G.backward()
|
232 |
+
|
233 |
+
def optimize(self):
|
234 |
+
self.forward()
|
235 |
+
self.net_D.train()
|
236 |
+
self.set_requires_grad(self.net_D, True)
|
237 |
+
self.opt_D.zero_grad()
|
238 |
+
self.backward_D()
|
239 |
+
self.opt_D.step()
|
240 |
+
|
241 |
+
self.net_G.train()
|
242 |
+
self.set_requires_grad(self.net_D, False)
|
243 |
+
self.opt_G.zero_grad()
|
244 |
+
self.backward_G()
|
245 |
+
self.opt_G.step()
|
246 |
+
|
247 |
+
class AverageMeter:
|
248 |
+
def __init__(self):
|
249 |
+
self.reset()
|
250 |
+
|
251 |
+
def reset(self):
|
252 |
+
self.count, self.avg, self.sum = [0.] * 3
|
253 |
+
|
254 |
+
def update(self, val, count=1):
|
255 |
+
self.count += count
|
256 |
+
self.sum += count * val
|
257 |
+
self.avg = self.sum / self.count
|
258 |
+
|
259 |
+
def create_loss_meters():
|
260 |
+
loss_D_fake = AverageMeter()
|
261 |
+
loss_D_real = AverageMeter()
|
262 |
+
loss_D = AverageMeter()
|
263 |
+
loss_G_GAN = AverageMeter()
|
264 |
+
loss_G_L1 = AverageMeter()
|
265 |
+
loss_G = AverageMeter()
|
266 |
+
|
267 |
+
return {'loss_D_fake': loss_D_fake,
|
268 |
+
'loss_D_real': loss_D_real,
|
269 |
+
'loss_D': loss_D,
|
270 |
+
'loss_G_GAN': loss_G_GAN,
|
271 |
+
'loss_G_L1': loss_G_L1,
|
272 |
+
'loss_G': loss_G}
|
273 |
+
|
274 |
+
def update_losses(model, loss_meter_dict, count):
|
275 |
+
for loss_name, loss_meter in loss_meter_dict.items():
|
276 |
+
loss = getattr(model, loss_name)
|
277 |
+
loss_meter.update(loss.item(), count=count)
|
278 |
+
|
279 |
+
def lab_to_rgb(L, ab):
|
280 |
+
"""
|
281 |
+
Takes a batch of images
|
282 |
+
"""
|
283 |
+
|
284 |
+
L = (L + 1.) * 50.
|
285 |
+
ab = ab * 110.
|
286 |
+
Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
|
287 |
+
rgb_imgs = []
|
288 |
+
for img in Lab:
|
289 |
+
img_rgb = lab2rgb(img)
|
290 |
+
rgb_imgs.append(img_rgb)
|
291 |
+
return np.stack(rgb_imgs, axis=0)
|
292 |
+
|
293 |
+
def visualize(model, data, dims):
|
294 |
+
model.net_G.eval()
|
295 |
+
with torch.no_grad():
|
296 |
+
model.setup_input(data)
|
297 |
+
model.forward()
|
298 |
+
model.net_G.train()
|
299 |
+
fake_color = model.fake_color.detach()
|
300 |
+
real_color = model.ab
|
301 |
+
L = model.L
|
302 |
+
fake_imgs = lab_to_rgb(L, fake_color)
|
303 |
+
real_imgs = lab_to_rgb(L, real_color)
|
304 |
+
for i in range(1):
|
305 |
+
# t_img = transforms.Resize((dims[0], dims[1]))(t_img)
|
306 |
+
img = Image.fromarray(np.uint8(fake_imgs[i]))
|
307 |
+
img = cv.resize(fake_imgs[i], dsize=(dims[1], dims[0]), interpolation=cv.INTER_CUBIC)
|
308 |
+
# st.text(f"Size of fake image {fake_imgs[i].shape} \n Type of image = {type(fake_imgs[i])}")
|
309 |
+
st.image(img, caption="Output image", use_column_width='auto', clamp=True)
|
310 |
+
|
311 |
+
def log_results(loss_meter_dict):
|
312 |
+
for loss_name, loss_meter in loss_meter_dict.items():
|
313 |
+
print(f"{loss_name}: {loss_meter.avg:.5f}")
|
314 |
+
|
315 |
+
# pip install fastai==2.4
|
316 |
+
from fastai.vision.learner import create_body
|
317 |
+
from torchvision.models.resnet import resnet18
|
318 |
+
from fastai.vision.models.unet import DynamicUnet
|
319 |
+
|
320 |
+
def build_res_unet(n_input=1, n_output=2, size=256):
|
321 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
322 |
+
body = create_body(resnet18(), pretrained=True, n_in=n_input, cut=-2)
|
323 |
+
net_G = DynamicUnet(body, n_output, (size, size)).to(device)
|
324 |
+
return net_G
|
325 |
+
|
326 |
+
net_G = build_res_unet(n_input=1, n_output=2, size=256)
|
327 |
+
net_G.load_state_dict(torch.load("res18-unet.pt", map_location=device))
|
328 |
+
model = MainModel(net_G=net_G)
|
329 |
+
model.load_state_dict(torch.load("final_model_weights.pt", map_location=device))
|
330 |
+
|
331 |
+
class MyDataset(torch.utils.data.Dataset):
|
332 |
+
def __init__(self, img_list):
|
333 |
+
super(MyDataset, self).__init__()
|
334 |
+
self.img_list = img_list
|
335 |
+
self.augmentations = transforms.Resize((SIZE, SIZE), Image.BICUBIC)
|
336 |
+
|
337 |
+
|
338 |
+
def __len__(self):
|
339 |
+
return len(self.img_list)
|
340 |
+
|
341 |
+
def __getitem__(self, idx):
|
342 |
+
img = self.img_list[idx]
|
343 |
+
img = self.augmentations(img)
|
344 |
+
img = np.array(img)
|
345 |
+
img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b
|
346 |
+
img_lab = transforms.ToTensor()(img_lab)
|
347 |
+
L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1
|
348 |
+
ab = img_lab[[1, 2], ...] / 110.
|
349 |
+
return {'L': L, 'ab': ab}
|
350 |
+
|
351 |
+
def make_dataloaders2(batch_size=16, n_workers=4, pin_memory=True, **kwargs): # A handy function to make our dataloaders
|
352 |
+
dataset = MyDataset(**kwargs)
|
353 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
|
354 |
+
pin_memory=pin_memory)
|
355 |
+
return dataloader
|
356 |
+
|
357 |
+
file_up = st.file_uploader("Upload an jpg image", type="jpg")
|
358 |
+
if file_up is not None:
|
359 |
+
im = Image.open(file_up)
|
360 |
+
st.text(body=f"Size of uploaded image {im.shape}")
|
361 |
+
a = im.shape
|
362 |
+
st.image(im, caption="Uploaded Image.", use_column_width='auto')
|
363 |
+
test_dl = make_dataloaders2(img_list=[im])
|
364 |
+
for data in test_dl:
|
365 |
+
model.setup_input(data)
|
366 |
+
model.optimize()
|
367 |
+
visualize(model, data, a)
|