import streamlit as st from PIL import Image import cv2 as cv # ---------Backend-------------------------------------------------------------- import os import glob import time import numpy as np from PIL import Image from pathlib import Path from tqdm.notebook import tqdm import matplotlib.pyplot as plt from skimage.color import rgb2lab, lab2rgb # pip install fastai==2.4 import torch from torch import nn, optim from torchvision import transforms from torchvision.utils import make_grid from torch.utils.data import Dataset, DataLoader device = torch.device("cuda" if torch.cuda.is_available() else "cpu") use_colab = None SIZE = 256 class ColorizationDataset(Dataset): def __init__(self, paths, split='train'): if split == 'train': self.transforms = transforms.Compose([ transforms.Resize((SIZE, SIZE), Image.BICUBIC), transforms.RandomHorizontalFlip(), # A little data augmentation! ]) elif split == 'val': self.transforms = transforms.Resize((SIZE, SIZE), Image.BICUBIC) self.split = split self.size = SIZE self.paths = paths def __getitem__(self, idx): img = Image.open(self.paths[idx]).convert("RGB") img = self.transforms(img) img = np.array(img) img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b img_lab = transforms.ToTensor()(img_lab) L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1 ab = img_lab[[1, 2], ...] / 110. # Between -1 and 1 return {'L': L, 'ab': ab} def __len__(self): return len(self.paths) def make_dataloaders(batch_size=16, n_workers=4, pin_memory=True, **kwargs): # A handy function to make our dataloaders dataset = ColorizationDataset(**kwargs) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers, pin_memory=pin_memory) return dataloader class UnetBlock(nn.Module): def __init__(self, nf, ni, submodule=None, input_c=None, dropout=False, innermost=False, outermost=False): super().__init__() self.outermost = outermost if input_c is None: input_c = nf downconv = nn.Conv2d(input_c, ni, kernel_size=4, stride=2, padding=1, bias=False) downrelu = nn.LeakyReLU(0.2, True) downnorm = nn.BatchNorm2d(ni) uprelu = nn.ReLU(True) upnorm = nn.BatchNorm2d(nf) if outermost: upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(ni, nf, kernel_size=4, stride=2, padding=1, bias=False) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4, stride=2, padding=1, bias=False) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if dropout: up += [nn.Dropout(0.5)] model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: return torch.cat([x, self.model(x)], 1) class Unet(nn.Module): def __init__(self, input_c=1, output_c=2, n_down=8, num_filters=64): super().__init__() unet_block = UnetBlock(num_filters * 8, num_filters * 8, innermost=True) for _ in range(n_down - 5): unet_block = UnetBlock(num_filters * 8, num_filters * 8, submodule=unet_block, dropout=True) out_filters = num_filters * 8 for _ in range(3): unet_block = UnetBlock(out_filters // 2, out_filters, submodule=unet_block) out_filters //= 2 self.model = UnetBlock(output_c, out_filters, input_c=input_c, submodule=unet_block, outermost=True) def forward(self, x): return self.model(x) class PatchDiscriminator(nn.Module): def __init__(self, input_c, num_filters=64, n_down=3): super().__init__() model = [self.get_layers(input_c, num_filters, norm=False)] model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down-1) else 2) for i in range(n_down)] # the 'if' statement is taking care of not using # stride of 2 for the last block in this loop model += [self.get_layers(num_filters * 2 ** n_down, 1, s=1, norm=False, act=False)] # Make sure to not use normalization or # activation for the last layer of the model self.model = nn.Sequential(*model) def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True, act=True): # when needing to make some repeatitive blocks of layers, layers = [nn.Conv2d(ni, nf, k, s, p, bias=not norm)] # it's always helpful to make a separate method for that purpose if norm: layers += [nn.BatchNorm2d(nf)] if act: layers += [nn.LeakyReLU(0.2, True)] return nn.Sequential(*layers) def forward(self, x): return self.model(x) class GANLoss(nn.Module): def __init__(self, gan_mode='vanilla', real_label=1.0, fake_label=0.0): super().__init__() self.register_buffer('real_label', torch.tensor(real_label)) self.register_buffer('fake_label', torch.tensor(fake_label)) if gan_mode == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif gan_mode == 'lsgan': self.loss = nn.MSELoss() def get_labels(self, preds, target_is_real): if target_is_real: labels = self.real_label else: labels = self.fake_label return labels.expand_as(preds) def __call__(self, preds, target_is_real): labels = self.get_labels(preds, target_is_real) loss = self.loss(preds, labels) return loss def init_weights(net, init='norm', gain=0.02): def init_func(m): classname = m.__class__.__name__ if hasattr(m, 'weight') and 'Conv' in classname: if init == 'norm': nn.init.normal_(m.weight.data, mean=0.0, std=gain) elif init == 'xavier': nn.init.xavier_normal_(m.weight.data, gain=gain) elif init == 'kaiming': nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias.data, 0.0) elif 'BatchNorm2d' in classname: nn.init.normal_(m.weight.data, 1., gain) nn.init.constant_(m.bias.data, 0.) net.apply(init_func) print(f"model initialized with {init} initialization") return net def init_model(model, device): model = model.to(device) model = init_weights(model) return model class MainModel(nn.Module): def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4, beta1=0.5, beta2=0.999, lambda_L1=100.): super().__init__() self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.lambda_L1 = lambda_L1 if net_G is None: self.net_G = init_model(Unet(input_c=1, output_c=2, n_down=8, num_filters=64), self.device) else: self.net_G = net_G.to(self.device) self.net_D = init_model(PatchDiscriminator(input_c=3, n_down=3, num_filters=64), self.device) self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device) self.L1criterion = nn.L1Loss() self.opt_G = optim.Adam(self.net_G.parameters(), lr=lr_G, betas=(beta1, beta2)) self.opt_D = optim.Adam(self.net_D.parameters(), lr=lr_D, betas=(beta1, beta2)) def set_requires_grad(self, model, requires_grad=True): for p in model.parameters(): p.requires_grad = requires_grad def setup_input(self, data): self.L = data['L'].to(self.device) self.ab = data['ab'].to(self.device) def forward(self): self.fake_color = self.net_G(self.L) def backward_D(self): fake_image = torch.cat([self.L, self.fake_color], dim=1) fake_preds = self.net_D(fake_image.detach()) self.loss_D_fake = self.GANcriterion(fake_preds, False) real_image = torch.cat([self.L, self.ab], dim=1) real_preds = self.net_D(real_image) self.loss_D_real = self.GANcriterion(real_preds, True) self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5 self.loss_D.backward() def backward_G(self): fake_image = torch.cat([self.L, self.fake_color], dim=1) fake_preds = self.net_D(fake_image) self.loss_G_GAN = self.GANcriterion(fake_preds, True) self.loss_G_L1 = self.L1criterion(self.fake_color, self.ab) * self.lambda_L1 self.loss_G = self.loss_G_GAN + self.loss_G_L1 self.loss_G.backward() def optimize(self): self.forward() self.net_D.train() self.set_requires_grad(self.net_D, True) self.opt_D.zero_grad() self.backward_D() self.opt_D.step() self.net_G.train() self.set_requires_grad(self.net_D, False) self.opt_G.zero_grad() self.backward_G() self.opt_G.step() class AverageMeter: def __init__(self): self.reset() def reset(self): self.count, self.avg, self.sum = [0.] * 3 def update(self, val, count=1): self.count += count self.sum += count * val self.avg = self.sum / self.count def create_loss_meters(): loss_D_fake = AverageMeter() loss_D_real = AverageMeter() loss_D = AverageMeter() loss_G_GAN = AverageMeter() loss_G_L1 = AverageMeter() loss_G = AverageMeter() return {'loss_D_fake': loss_D_fake, 'loss_D_real': loss_D_real, 'loss_D': loss_D, 'loss_G_GAN': loss_G_GAN, 'loss_G_L1': loss_G_L1, 'loss_G': loss_G} def update_losses(model, loss_meter_dict, count): for loss_name, loss_meter in loss_meter_dict.items(): loss = getattr(model, loss_name) loss_meter.update(loss.item(), count=count) def lab_to_rgb(L, ab): """ Takes a batch of images """ L = (L + 1.) * 50. ab = ab * 110. Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy() rgb_imgs = [] for img in Lab: img_rgb = lab2rgb(img) rgb_imgs.append(img_rgb) return np.stack(rgb_imgs, axis=0) def visualize(model, data, dims): model.net_G.eval() with torch.no_grad(): model.setup_input(data) model.forward() model.net_G.train() fake_color = model.fake_color.detach() real_color = model.ab L = model.L fake_imgs = lab_to_rgb(L, fake_color) real_imgs = lab_to_rgb(L, real_color) for i in range(1): # t_img = transforms.Resize((dims[0], dims[1]))(t_img) img = Image.fromarray(np.uint8(fake_imgs[i])) img = cv.resize(fake_imgs[i], dsize=(dims[1], dims[0]), interpolation=cv.INTER_CUBIC) # st.text(f"Size of fake image {fake_imgs[i].shape} \n Type of image = {type(fake_imgs[i])}") st.image(img, caption="Output image", use_column_width='auto', clamp=True) def log_results(loss_meter_dict): for loss_name, loss_meter in loss_meter_dict.items(): print(f"{loss_name}: {loss_meter.avg:.5f}") # pip install fastai==2.4 from fastai.vision.learner import create_body from torchvision.models.resnet import resnet18 from fastai.vision.models.unet import DynamicUnet def build_res_unet(n_input=1, n_output=2, size=256): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") body = create_body(resnet18(), pretrained=True, n_in=n_input, cut=-2) net_G = DynamicUnet(body, n_output, (size, size)).to(device) return net_G net_G = build_res_unet(n_input=1, n_output=2, size=256) net_G.load_state_dict(torch.load("res18-unet.pt", map_location=device)) model = MainModel(net_G=net_G) model.load_state_dict(torch.load("final_model_weights.pt", map_location=device)) class MyDataset(torch.utils.data.Dataset): def __init__(self, img_list): super(MyDataset, self).__init__() self.img_list = img_list self.augmentations = transforms.Resize((SIZE, SIZE), Image.BICUBIC) def __len__(self): return len(self.img_list) def __getitem__(self, idx): img = self.img_list[idx] img = self.augmentations(img) img = np.array(img) img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b img_lab = transforms.ToTensor()(img_lab) L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1 ab = img_lab[[1, 2], ...] / 110. return {'L': L, 'ab': ab} def make_dataloaders2(batch_size=16, n_workers=4, pin_memory=True, **kwargs): # A handy function to make our dataloaders dataset = MyDataset(**kwargs) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers, pin_memory=pin_memory) return dataloader file_up = st.file_uploader("Upload an jpg image", type="jpg") if file_up is not None: im = Image.open(file_up) st.text(body=f"Size of uploaded image {im.shape}") a = im.shape st.image(im, caption="Uploaded Image.", use_column_width='auto') test_dl = make_dataloaders2(img_list=[im]) for data in test_dl: model.setup_input(data) model.optimize() visualize(model, data, a)