Spaces:
Runtime error
Runtime error
File size: 3,238 Bytes
28be794 3454357 846c9b9 f482a30 bc5676d 3a4738e 3454357 f4547e9 f482a30 3a4738e f4547e9 f482a30 f4547e9 72c7204 28be794 3a4738e 28be794 3454357 7b14736 1c00bf5 2733741 48e5161 3454357 1c00bf5 3454357 35b1251 28be794 a203666 8cc1051 35b1251 28be794 35b1251 28be794 8e36b55 846c9b9 35b1251 6143265 35b1251 6143265 28be794 35b1251 28be794 35b1251 28be794 6143265 35b1251 28be794 35b1251 28be794 35b1251 3454357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import streamlit as st
import pandas as pd
import altair as alt
from transformers import pipeline
#!pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer, util
from sentence_transformers import SentenceTransformer
import numpy as np
import sys
import json
#from torch.utils.data import DataLoader
from sentence_transformers import SentenceTransformer, LoggingHandler, util, models, evaluation, losses, InputExample
from torch.utils.data import IterableDataset
import tqdm
#from torch.utils.data import Dataset
import random
from shutil import copyfile
from urllib.error import URLError
## TEXT ######################################################################################################################
# Load document embeddings
# set up title and sidebar
st.title(" Your top 3 Important Sessions")
st.markdown("This application is a dashboard for displaying your top 3 Sessions at the Nashville summit")
doc_emb = np.loadtxt("abstract-embed.txt", dtype=float)
# Load data
df = pd.read_csv("sessions.csv", usecols=['Unique ID', 'Name', 'Description', 'Activity Code', 'Start Time', 'End Time', 'Location Name'])
# front end elements of the web page
html_temp = """
<div style ="background-color:lightblue;padding:13px">
<h1 style ="color:white;text-align:center;">Sentence Similarity App for Nashville Analytic Summit 2022</h1>
</div>
"""
def main():
# display the front end aspect
st.markdown(html_temp, unsafe_allow_html = True)
# Get attributes from dataframe
docs = list(df["Description"])
titles = list(df["Name"])
start_times = list(df["Start Time"])
end_times = list(df["End Time"])
locations = list(df["Location Name"])
# Query
# Load the model
model = pipeline('text-classification')#('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
query = st.text_input("Enter your query: ")
if query:
#st.text_area('Text area')
#age = st.number_input("Age in Years")
#Encode query and documents
query_emb = model(query)#.astype(float)
#Compute dot score between query and all document embeddings
#scores = util.dot_score(query_emb, doc_emb.astype(float))#[0].cpu().tolist()
#cos_scores = util.pytorch_cos_sim(query_emb, doc_emb)[0]
scores = util.pytorch_cos_sim(query_emb, doc_emb)[0]
#Combine docs & scores with other attributes
doc_score_pairs = list(zip(docs, scores, titles, start_times, end_times, locations))
# top_k results to return
top_k=3
print(" Your top", top_k, "most similar sessions in the Summit:")
#Sort the results in decreasing order and get the first top_k
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
#Output presentation recommendations
for doc, score, title, start_time, end_time, location in doc_score_pairs[:top_k]:
st.write("Score: %f" %score)
st.write("Title: %s" %title)
st.write("Abstract: %s" %doc)
st.write("Location: %s" %location)
st.write(f"From {start_time} to {end_time}")
st.write('\n')
if __name__ == "__main__":
main() |