Spaces:
Runtime error
Runtime error
File size: 2,436 Bytes
28be794 3454357 752cac3 3454357 752cac3 28be794 3454357 2733741 3454357 35b1251 28be794 35b1251 28be794 35b1251 28be794 35b1251 28be794 35b1251 28be794 35b1251 28be794 35b1251 28be794 35b1251 28be794 35b1251 3454357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import streamlit as st
import pandas as pd
import altair as alt
#from sentence_transformers import SentenceTransformer, util
import numpy as np
#from urllib.error import URLError
# Load document embeddings
# set up title and sidebar
st.title(" Your Top 3 Important Sessions")
st.markdown("This application is a dashboard for displaying your top 3 Sessions at the summit")
doc_emb = np.loadtxt("abstract-embed.txt", dtype=float)
# Load data
df = pd.read_csv("sessions.csv", usecols=['Unique ID', 'Name', 'Description', 'Activity Code', 'Start Time', 'End Time', 'Location Name'])
# front end elements of the web page
html_temp = """
<div style ="background-color:lightblue;padding:13px">
<h1 style ="color:white;text-align:center;">Sentence Similarity App Nashville Analytic Summit</h1>
</div>
"""
def main():
# display the front end aspect
st.markdown(html_temp, unsafe_allow_html = True)
# Get attributes from dataframe
docs = list(df["Description"])
titles = list(df["Name"])
start_times = list(df["Start Time"])
end_times = list(df["End Time"])
locations = list(df["Location Name"])
# Query
# Load model
model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
query = st.text_input("Enter your query: ")
if query:
#st.text_area('Text area')
#age = st.number_input("Age in Years")
#Encode query and documents
query_emb = model.encode(query).astype(float)
#Compute dot score between query and all document embeddings
scores = util.dot_score(query_emb, doc_emb.astype(float))[0].cpu().tolist()
#Combine docs & scores with other attributes
doc_score_pairs = list(zip(docs, scores, titles, start_times, end_times, locations))
# top_k results to return
top_k=3
print(" Your top", top_k, "most similar sessions in the Summit:")
#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
#Output presentation recommendations
for doc, score, title, start_time, end_time, location in doc_score_pairs[:top_k]:
st.write("Score: %f" %score)
st.write("Title: %s" %title)
st.write("Abstract: %s" %doc)
st.write("Location: %s" %location)
st.write(f"From {start_time} to {end_time}")
st.write('\n')
if __name__ == "__main__":
main() |