Spaces:
Runtime error
Runtime error
import streamlit as st | |
import time | |
import pandas as pd | |
import numpy as np | |
#pip install -U sentence-transformers | |
from sentence_transformers import SentenceTransformer, util | |
# Load document embeddings | |
doc_emb = np.loadtxt("abstract-embed.txt", dtype=float) | |
doc_emb | |
# Load data | |
df = pd.read_csv("sessions.csv", usecols=['Unique ID', 'Name', 'Description', 'Activity Code', 'Start Time', 'End Time', 'Location Name']) | |
df.head() | |
# Get attributes from dataframe | |
docs = list(df["Description"]) | |
titles = list(df["Name"]) | |
start_times = list(df["Start Time"]) | |
end_times = list(df["End Time"]) | |
locations = list(df["Location Name"]) | |
# Query | |
query = input("Enter your query: ") | |
#Encode query and documents | |
query_emb = model.encode(query).astype(float) | |
#Compute dot score between query and all document embeddings | |
scores = util.dot_score(query_emb, doc_emb.astype(float))[0].cpu().tolist() | |
#Combine docs & scores with other attributes | |
doc_score_pairs = list(zip(docs, scores, titles, start_times, end_times, locations)) | |
# top_k results to return | |
top_k=3 | |
print(" Your top", top_k, "most similar sessions in the Summit:") | |
#Sort by decreasing score | |
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) | |
#Output presentation recommendations | |
for doc, score, title, start_time, end_time, location in doc_score_pairs[:top_k]: | |
print("Score: %f" %score) | |
print("Title: %s" %title) | |
print("Abstract: %s" %doc) | |
print("Location: %s" %location) | |
f"From {start_time} to {end_time}" | |
print('\n') | |