File size: 3,685 Bytes
8fa0910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f504a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fa0910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115511e
8fa0910
4f504a6
11351d7
8fa0910
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr

from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation

feature_extractor = SegformerFeatureExtractor.from_pretrained(
    "segments-tobias/segformer-b3-finetuned-segments-sidewalk"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
    "segments-tobias/segformer-b3-finetuned-segments-sidewalk"
)

def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [
        [255, 0, 0],
        [255, 255, 0],
        [0, 255, 0],
        [0, 255, 255],
        [0, 0, 255],
        [255, 0, 255],
        [128, 0, 0],
        [128, 128, 0],
        [0, 128, 0],
        [0, 128, 128],
        [0, 0, 128],
        [128, 0, 128],
        [255, 128, 0],
        [128, 255, 0],
        [0, 128, 255],
        [255, 0, 128],
        [128, 0, 255],
        [255, 255, 128],
        [128, 255, 255],
        [255, 128, 255],
        [64, 64, 64],
        [192, 192, 192],
        [255, 255, 255],
        [0, 0, 0],
        [255, 128, 64],
        [64, 255, 128],
        [128, 64, 255],
        [255, 192, 128],
        [128, 255, 192],
        [192, 128, 255],
        [255, 0, 64],
        [64, 128, 255],
        [192, 255, 128],
        [255, 128, 192],
        [128, 192, 255],
        [255, 255, 192],
    ]

labels_list = []

with open(r'labels.txt', 'r') as fp:
    for line in fp:
        labels_list.append(line[:-1])

colormap = np.asarray(ade_palette())

def label_to_color_image(label):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")

    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")
    return colormap[label]

def draw_plot(pred_img, seg):
    fig = plt.figure(figsize=(20, 15))

    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis('off')
    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg.numpy().astype("uint8"))
    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
    ax.yaxis.tick_right()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=25)
    return fig

def sepia(input_img):
    input_img = Image.fromarray(input_img)

    inputs = feature_extractor(images=input_img, return_tensors="tf")
    outputs = model(**inputs)
    logits = outputs.logits

    logits = tf.transpose(logits, [0, 2, 3, 1])
    logits = tf.image.resize(
        logits, input_img.size[::-1]
    )  # We reverse the shape of `image` because `image.size` returns width and height.
    seg = tf.math.argmax(logits, axis=-1)[0]

    color_seg = np.zeros(
        (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
    )  # height, width, 3
    for label, color in enumerate(colormap):
        color_seg[seg.numpy() == label, :] = color

    # Show image + mask
    pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
    pred_img = pred_img.astype(np.uint8)

    fig = draw_plot(pred_img, seg)
    return fig

demo = gr.Interface(fn=sepia,
                    inputs=gr.Image(shape=(400, 600)),
                    outputs=['plot'],
                    examples=["sidewalk-1.png", "sidewalk-2.png", "sidewalk-3.png", "sidewalk-4.png", "sidewalk-5.png"],
                    allow_flagging='never')


demo.launch()