Spaces:
Runtime error
Runtime error
import json | |
import os | |
import random | |
import numpy as np | |
import torch | |
import textattack | |
device = os.environ.get( | |
"TA_DEVICE", torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
) | |
def html_style_from_dict(style_dict): | |
"""Turns. | |
{ 'color': 'red', 'height': '100px'} | |
into | |
style: "color: red; height: 100px" | |
""" | |
style_str = "" | |
for key in style_dict: | |
style_str += key + ": " + style_dict[key] + ";" | |
return 'style="{}"'.format(style_str) | |
def html_table_from_rows(rows, title=None, header=None, style_dict=None): | |
# Stylize the container div. | |
if style_dict: | |
table_html = "<div {}>".format(html_style_from_dict(style_dict)) | |
else: | |
table_html = "<div>" | |
# Print the title string. | |
if title: | |
table_html += "<h1>{}</h1>".format(title) | |
# Construct each row as HTML. | |
table_html = '<table class="table">' | |
if header: | |
table_html += "<tr>" | |
for element in header: | |
table_html += "<th>" | |
table_html += str(element) | |
table_html += "</th>" | |
table_html += "</tr>" | |
for row in rows: | |
table_html += "<tr>" | |
for element in row: | |
table_html += "<td>" | |
table_html += str(element) | |
table_html += "</td>" | |
table_html += "</tr>" | |
# Close the table and print to screen. | |
table_html += "</table></div>" | |
return table_html | |
def get_textattack_model_num_labels(model_name, model_path): | |
"""Reads `train_args.json` and gets the number of labels for a trained | |
model, if present.""" | |
model_cache_path = textattack.shared.utils.download_from_s3(model_path) | |
train_args_path = os.path.join(model_cache_path, "train_args.json") | |
if not os.path.exists(train_args_path): | |
textattack.shared.logger.warn( | |
f"train_args.json not found in model path {model_path}. Defaulting to 2 labels." | |
) | |
return 2 | |
else: | |
args = json.loads(open(train_args_path).read()) | |
return args.get("num_labels", 2) | |
def load_textattack_model_from_path(model_name, model_path): | |
"""Loads a pre-trained TextAttack model from its name and path. | |
For example, model_name "lstm-yelp" and model path | |
"models/classification/lstm/yelp". | |
""" | |
colored_model_name = textattack.shared.utils.color_text( | |
model_name, color="blue", method="ansi" | |
) | |
if model_name.startswith("lstm"): | |
num_labels = get_textattack_model_num_labels(model_name, model_path) | |
textattack.shared.logger.info( | |
f"Loading pre-trained TextAttack LSTM: {colored_model_name}" | |
) | |
model = textattack.models.helpers.LSTMForClassification( | |
model_path=model_path, num_labels=num_labels | |
) | |
elif model_name.startswith("cnn"): | |
num_labels = get_textattack_model_num_labels(model_name, model_path) | |
textattack.shared.logger.info( | |
f"Loading pre-trained TextAttack CNN: {colored_model_name}" | |
) | |
model = textattack.models.helpers.WordCNNForClassification( | |
model_path=model_path, num_labels=num_labels | |
) | |
elif model_name.startswith("t5"): | |
model = textattack.models.helpers.T5ForTextToText(model_path) | |
else: | |
raise ValueError(f"Unknown textattack model {model_path}") | |
return model | |
def set_seed(random_seed): | |
random.seed(random_seed) | |
np.random.seed(random_seed) | |
torch.manual_seed(random_seed) | |
torch.cuda.manual_seed(random_seed) | |
def hashable(key): | |
try: | |
hash(key) | |
return True | |
except TypeError: | |
return False | |
def sigmoid(n): | |
return 1 / (1 + np.exp(-n)) | |
GLOBAL_OBJECTS = {} | |
ARGS_SPLIT_TOKEN = "^" | |