Spaces:
Runtime error
Runtime error
""" | |
PyTorch Model Wrapper | |
-------------------------- | |
""" | |
import torch | |
from torch.nn import CrossEntropyLoss | |
import textattack | |
from .model_wrapper import ModelWrapper | |
torch.cuda.empty_cache() | |
class PyTorchModelWrapper(ModelWrapper): | |
"""Loads a PyTorch model (`nn.Module`) and tokenizer. | |
Args: | |
model (torch.nn.Module): PyTorch model | |
tokenizer: tokenizer whose output can be packed as a tensor and passed to the model. | |
No type requirement, but most have `tokenizer` method that accepts list of strings. | |
""" | |
def __init__(self, model, tokenizer): | |
if not isinstance(model, torch.nn.Module): | |
raise TypeError( | |
f"PyTorch model must be torch.nn.Module, got type {type(model)}" | |
) | |
self.model = model | |
self.tokenizer = tokenizer | |
def to(self, device): | |
self.model.to(device) | |
def __call__(self, text_input_list, batch_size=32): | |
model_device = next(self.model.parameters()).device | |
ids = self.tokenizer(text_input_list) | |
ids = torch.tensor(ids).to(model_device) | |
with torch.no_grad(): | |
outputs = textattack.shared.utils.batch_model_predict( | |
self.model, ids, batch_size=batch_size | |
) | |
return outputs | |
def get_grad(self, text_input, loss_fn=CrossEntropyLoss()): | |
"""Get gradient of loss with respect to input tokens. | |
Args: | |
text_input (str): input string | |
loss_fn (torch.nn.Module): loss function. Default is `torch.nn.CrossEntropyLoss` | |
Returns: | |
Dict of ids, tokens, and gradient as numpy array. | |
""" | |
if not hasattr(self.model, "get_input_embeddings"): | |
raise AttributeError( | |
f"{type(self.model)} must have method `get_input_embeddings` that returns `torch.nn.Embedding` object that represents input embedding layer" | |
) | |
if not isinstance(loss_fn, torch.nn.Module): | |
raise ValueError("Loss function must be of type `torch.nn.Module`.") | |
self.model.train() | |
embedding_layer = self.model.get_input_embeddings() | |
original_state = embedding_layer.weight.requires_grad | |
embedding_layer.weight.requires_grad = True | |
emb_grads = [] | |
def grad_hook(module, grad_in, grad_out): | |
emb_grads.append(grad_out[0]) | |
emb_hook = embedding_layer.register_backward_hook(grad_hook) | |
self.model.zero_grad() | |
model_device = next(self.model.parameters()).device | |
ids = self.tokenizer([text_input]) | |
ids = torch.tensor(ids).to(model_device) | |
predictions = self.model(ids) | |
output = predictions.argmax(dim=1) | |
loss = loss_fn(predictions, output) | |
loss.backward() | |
# grad w.r.t to word embeddings | |
# Fix for Issue #601 | |
# Check if gradient has shape [max_sequence,1,_] ( when model input in transpose of input sequence) | |
if emb_grads[0].shape[1] == 1: | |
grad = torch.transpose(emb_grads[0], 0, 1)[0].cpu().numpy() | |
else: | |
# gradient has shape [1,max_sequence,_] | |
grad = emb_grads[0][0].cpu().numpy() | |
embedding_layer.weight.requires_grad = original_state | |
emb_hook.remove() | |
self.model.eval() | |
output = {"ids": ids[0].tolist(), "gradient": grad} | |
return output | |
def _tokenize(self, inputs): | |
"""Helper method that for `tokenize` | |
Args: | |
inputs (list[str]): list of input strings | |
Returns: | |
tokens (list[list[str]]): List of list of tokens as strings | |
""" | |
return [self.tokenizer.convert_ids_to_tokens(self.tokenizer(x)) for x in inputs] | |