Spaces:
Sleeping
Sleeping
File size: 9,113 Bytes
4a1df2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
""".. _goal_function:
GoalFunction Class
===========================================================
"""
from abc import ABC, abstractmethod
import lru
import numpy as np
import torch
from textattack.goal_function_results.goal_function_result import (
GoalFunctionResultStatus,
)
from textattack.shared import validators
from textattack.shared.utils import ReprMixin
class GoalFunction(ReprMixin, ABC):
"""Evaluates how well a perturbed attacked_text object is achieving a
specified goal.
Args:
model_wrapper (:class:`~textattack.models.wrappers.ModelWrapper`):
The victim model to attack.
maximizable(:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether the goal function is maximizable, as opposed to a boolean result of success or failure.
query_budget (:obj:`float`, `optional`, defaults to :obj:`float("in")`):
The maximum number of model queries allowed.
model_cache_size (:obj:`int`, `optional`, defaults to :obj:`2**20`):
The maximum number of items to keep in the model results cache at once.
"""
def __init__(
self,
model_wrapper,
maximizable=False,
use_cache=True,
query_budget=float("inf"),
model_batch_size=32,
model_cache_size=2**20,
):
validators.validate_model_goal_function_compatibility(
self.__class__, model_wrapper.model.__class__
)
self.model = model_wrapper
self.maximizable = maximizable
self.use_cache = use_cache
self.query_budget = query_budget
self.batch_size = model_batch_size
if self.use_cache:
self._call_model_cache = lru.LRU(model_cache_size)
else:
self._call_model_cache = None
def clear_cache(self):
if self.use_cache:
self._call_model_cache.clear()
def init_attack_example(self, attacked_text, ground_truth_output):
"""Called before attacking ``attacked_text`` to 'reset' the goal
function and set properties for this example."""
self.initial_attacked_text = attacked_text
self.ground_truth_output = ground_truth_output
self.num_queries = 0
result, _ = self.get_result(attacked_text, check_skip=True)
return result, _
def get_output(self, attacked_text):
"""Returns output for display based on the result of calling the
model."""
return self._get_displayed_output(self._call_model([attacked_text])[0])
def get_result(self, attacked_text, **kwargs):
"""A helper method that queries ``self.get_results`` with a single
``AttackedText`` object."""
results, search_over = self.get_results([attacked_text], **kwargs)
result = results[0] if len(results) else None
return result, search_over
def get_results(self, attacked_text_list, check_skip=False):
"""For each attacked_text object in attacked_text_list, returns a
result consisting of whether or not the goal has been achieved, the
output for display purposes, and a score.
Additionally returns whether the search is over due to the query
budget.
"""
results = []
if self.query_budget < float("inf"):
queries_left = self.query_budget - self.num_queries
attacked_text_list = attacked_text_list[:queries_left]
self.num_queries += len(attacked_text_list)
model_outputs = self._call_model(attacked_text_list)
for attacked_text, raw_output in zip(attacked_text_list, model_outputs):
displayed_output = self._get_displayed_output(raw_output)
goal_status = self._get_goal_status(
raw_output, attacked_text, check_skip=check_skip
)
goal_function_score = self._get_score(raw_output, attacked_text)
results.append(
self._goal_function_result_type()(
attacked_text,
raw_output,
displayed_output,
goal_status,
goal_function_score,
self.num_queries,
self.ground_truth_output,
)
)
return results, self.num_queries == self.query_budget
def _get_goal_status(self, model_output, attacked_text, check_skip=False):
should_skip = check_skip and self._should_skip(model_output, attacked_text)
if should_skip:
return GoalFunctionResultStatus.SKIPPED
if self.maximizable:
return GoalFunctionResultStatus.MAXIMIZING
if self._is_goal_complete(model_output, attacked_text):
return GoalFunctionResultStatus.SUCCEEDED
return GoalFunctionResultStatus.SEARCHING
@abstractmethod
def _is_goal_complete(self, model_output, attacked_text):
raise NotImplementedError()
def _should_skip(self, model_output, attacked_text):
return self._is_goal_complete(model_output, attacked_text)
@abstractmethod
def _get_score(self, model_output, attacked_text):
raise NotImplementedError()
def _get_displayed_output(self, raw_output):
return raw_output
@abstractmethod
def _goal_function_result_type(self):
"""Returns the class of this goal function's results."""
raise NotImplementedError()
@abstractmethod
def _process_model_outputs(self, inputs, outputs):
"""Processes and validates a list of model outputs.
This is a task-dependent operation. For example, classification
outputs need to make sure they have a softmax applied.
"""
raise NotImplementedError()
def _call_model_uncached(self, attacked_text_list):
"""Queries model and returns outputs for a list of AttackedText
objects."""
if not len(attacked_text_list):
return []
inputs = [at.tokenizer_input for at in attacked_text_list]
outputs = []
i = 0
while i < len(inputs):
batch = inputs[i : i + self.batch_size]
batch_preds = self.model(batch)
# Some seq-to-seq models will return a single string as a prediction
# for a single-string list. Wrap these in a list.
if isinstance(batch_preds, str):
batch_preds = [batch_preds]
# Get PyTorch tensors off of other devices.
if isinstance(batch_preds, torch.Tensor):
batch_preds = batch_preds.cpu()
if isinstance(batch_preds, list):
outputs.extend(batch_preds)
elif isinstance(batch_preds, np.ndarray):
outputs.append(torch.tensor(batch_preds))
else:
outputs.append(batch_preds)
i += self.batch_size
if isinstance(outputs[0], torch.Tensor):
outputs = torch.cat(outputs, dim=0)
assert len(inputs) == len(
outputs
), f"Got {len(outputs)} outputs for {len(inputs)} inputs"
return self._process_model_outputs(attacked_text_list, outputs)
def _call_model(self, attacked_text_list):
"""Gets predictions for a list of ``AttackedText`` objects.
Gets prediction from cache if possible. If prediction is not in
the cache, queries model and stores prediction in cache.
"""
if not self.use_cache:
return self._call_model_uncached(attacked_text_list)
else:
uncached_list = []
for text in attacked_text_list:
if text in self._call_model_cache:
# Re-write value in cache. This moves the key to the top of the
# LRU cache and prevents the unlikely event that the text
# is overwritten when we store the inputs from `uncached_list`.
self._call_model_cache[text] = self._call_model_cache[text]
else:
uncached_list.append(text)
uncached_list = [
text
for text in attacked_text_list
if text not in self._call_model_cache
]
outputs = self._call_model_uncached(uncached_list)
for text, output in zip(uncached_list, outputs):
self._call_model_cache[text] = output
all_outputs = [self._call_model_cache[text] for text in attacked_text_list]
return all_outputs
def extra_repr_keys(self):
attrs = []
if self.query_budget < float("inf"):
attrs.append("query_budget")
if self.maximizable:
attrs.append("maximizable")
return attrs
def __getstate__(self):
state = self.__dict__.copy()
if self.use_cache:
state["_call_model_cache"] = self._call_model_cache.get_size()
return state
def __setstate__(self, state):
self.__dict__ = state
if self.use_cache:
self._call_model_cache = lru.LRU(state["_call_model_cache"])
|