Spaces:
Running
Running
File size: 13,425 Bytes
4a1df2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
"""
ModelArgs Class
===============
"""
from dataclasses import dataclass
import json
import os
import transformers
import textattack
from textattack.shared.utils import ARGS_SPLIT_TOKEN, load_module_from_file
HUGGINGFACE_MODELS = {
#
# bert-base-uncased
#
"bert-base-uncased": "bert-base-uncased",
"bert-base-uncased-ag-news": "textattack/bert-base-uncased-ag-news",
"bert-base-uncased-cola": "textattack/bert-base-uncased-CoLA",
"bert-base-uncased-imdb": "textattack/bert-base-uncased-imdb",
"bert-base-uncased-mnli": "textattack/bert-base-uncased-MNLI",
"bert-base-uncased-mrpc": "textattack/bert-base-uncased-MRPC",
"bert-base-uncased-qnli": "textattack/bert-base-uncased-QNLI",
"bert-base-uncased-qqp": "textattack/bert-base-uncased-QQP",
"bert-base-uncased-rte": "textattack/bert-base-uncased-RTE",
"bert-base-uncased-sst2": "textattack/bert-base-uncased-SST-2",
"bert-base-uncased-stsb": "textattack/bert-base-uncased-STS-B",
"bert-base-uncased-wnli": "textattack/bert-base-uncased-WNLI",
"bert-base-uncased-mr": "textattack/bert-base-uncased-rotten-tomatoes",
"bert-base-uncased-snli": "textattack/bert-base-uncased-snli",
"bert-base-uncased-yelp": "textattack/bert-base-uncased-yelp-polarity",
#
# distilbert-base-cased
#
"distilbert-base-uncased": "distilbert-base-uncased",
"distilbert-base-cased-cola": "textattack/distilbert-base-cased-CoLA",
"distilbert-base-cased-mrpc": "textattack/distilbert-base-cased-MRPC",
"distilbert-base-cased-qqp": "textattack/distilbert-base-cased-QQP",
"distilbert-base-cased-snli": "textattack/distilbert-base-cased-snli",
"distilbert-base-cased-sst2": "textattack/distilbert-base-cased-SST-2",
"distilbert-base-cased-stsb": "textattack/distilbert-base-cased-STS-B",
"distilbert-base-uncased-ag-news": "textattack/distilbert-base-uncased-ag-news",
"distilbert-base-uncased-cola": "textattack/distilbert-base-cased-CoLA",
"distilbert-base-uncased-imdb": "textattack/distilbert-base-uncased-imdb",
"distilbert-base-uncased-mnli": "textattack/distilbert-base-uncased-MNLI",
"distilbert-base-uncased-mr": "textattack/distilbert-base-uncased-rotten-tomatoes",
"distilbert-base-uncased-mrpc": "textattack/distilbert-base-uncased-MRPC",
"distilbert-base-uncased-qnli": "textattack/distilbert-base-uncased-QNLI",
"distilbert-base-uncased-rte": "textattack/distilbert-base-uncased-RTE",
"distilbert-base-uncased-wnli": "textattack/distilbert-base-uncased-WNLI",
#
# roberta-base (RoBERTa is cased by default)
#
"roberta-base": "roberta-base",
"roberta-base-ag-news": "textattack/roberta-base-ag-news",
"roberta-base-cola": "textattack/roberta-base-CoLA",
"roberta-base-imdb": "textattack/roberta-base-imdb",
"roberta-base-mr": "textattack/roberta-base-rotten-tomatoes",
"roberta-base-mrpc": "textattack/roberta-base-MRPC",
"roberta-base-qnli": "textattack/roberta-base-QNLI",
"roberta-base-rte": "textattack/roberta-base-RTE",
"roberta-base-sst2": "textattack/roberta-base-SST-2",
"roberta-base-stsb": "textattack/roberta-base-STS-B",
"roberta-base-wnli": "textattack/roberta-base-WNLI",
#
# albert-base-v2 (ALBERT is cased by default)
#
"albert-base-v2": "albert-base-v2",
"albert-base-v2-ag-news": "textattack/albert-base-v2-ag-news",
"albert-base-v2-cola": "textattack/albert-base-v2-CoLA",
"albert-base-v2-imdb": "textattack/albert-base-v2-imdb",
"albert-base-v2-mr": "textattack/albert-base-v2-rotten-tomatoes",
"albert-base-v2-rte": "textattack/albert-base-v2-RTE",
"albert-base-v2-qqp": "textattack/albert-base-v2-QQP",
"albert-base-v2-snli": "textattack/albert-base-v2-snli",
"albert-base-v2-sst2": "textattack/albert-base-v2-SST-2",
"albert-base-v2-stsb": "textattack/albert-base-v2-STS-B",
"albert-base-v2-wnli": "textattack/albert-base-v2-WNLI",
"albert-base-v2-yelp": "textattack/albert-base-v2-yelp-polarity",
#
# xlnet-base-cased
#
"xlnet-base-cased": "xlnet-base-cased",
"xlnet-base-cased-cola": "textattack/xlnet-base-cased-CoLA",
"xlnet-base-cased-imdb": "textattack/xlnet-base-cased-imdb",
"xlnet-base-cased-mr": "textattack/xlnet-base-cased-rotten-tomatoes",
"xlnet-base-cased-mrpc": "textattack/xlnet-base-cased-MRPC",
"xlnet-base-cased-rte": "textattack/xlnet-base-cased-RTE",
"xlnet-base-cased-stsb": "textattack/xlnet-base-cased-STS-B",
"xlnet-base-cased-wnli": "textattack/xlnet-base-cased-WNLI",
}
#
# Models hosted by textattack.
# `models` vs `models_v2`: `models_v2` is simply a new dir in S3 that contains models' `config.json`.
# Fixes issue https://github.com/QData/TextAttack/issues/485
# Model parameters has not changed.
#
TEXTATTACK_MODELS = {
#
# LSTMs
#
"lstm-ag-news": "models_v2/classification/lstm/ag-news",
"lstm-imdb": "models_v2/classification/lstm/imdb",
"lstm-mr": "models_v2/classification/lstm/mr",
"lstm-sst2": "models_v2/classification/lstm/sst2",
"lstm-yelp": "models_v2/classification/lstm/yelp",
#
# CNNs
#
"cnn-ag-news": "models_v2/classification/cnn/ag-news",
"cnn-imdb": "models_v2/classification/cnn/imdb",
"cnn-mr": "models_v2/classification/cnn/rotten-tomatoes",
"cnn-sst2": "models_v2/classification/cnn/sst",
"cnn-yelp": "models_v2/classification/cnn/yelp",
#
# T5 for translation
#
"t5-en-de": "english_to_german",
"t5-en-fr": "english_to_french",
"t5-en-ro": "english_to_romanian",
#
# T5 for summarization
#
"t5-summarization": "summarization",
}
@dataclass
class ModelArgs:
"""Arguments for loading base/pretrained or trained models."""
model: str = None
model_from_file: str = None
model_from_huggingface: str = None
@classmethod
def _add_parser_args(cls, parser):
"""Adds model-related arguments to an argparser."""
model_group = parser.add_mutually_exclusive_group()
model_names = list(HUGGINGFACE_MODELS.keys()) + list(TEXTATTACK_MODELS.keys())
model_group.add_argument(
"--model",
type=str,
required=False,
default=None,
help="Name of or path to a pre-trained TextAttack model to load. Choices: "
+ str(model_names),
)
model_group.add_argument(
"--model-from-file",
type=str,
required=False,
help="File of model and tokenizer to import.",
)
model_group.add_argument(
"--model-from-huggingface",
type=str,
required=False,
help="Name of or path of pre-trained HuggingFace model to load.",
)
return parser
@classmethod
def _create_model_from_args(cls, args):
"""Given ``ModelArgs``, return specified
``textattack.models.wrappers.ModelWrapper`` object."""
assert isinstance(
args, cls
), f"Expect args to be of type `{type(cls)}`, but got type `{type(args)}`."
if args.model_from_file:
# Support loading the model from a .py file where a model wrapper
# is instantiated.
colored_model_name = textattack.shared.utils.color_text(
args.model_from_file, color="blue", method="ansi"
)
textattack.shared.logger.info(
f"Loading model and tokenizer from file: {colored_model_name}"
)
if ARGS_SPLIT_TOKEN in args.model_from_file:
model_file, model_name = args.model_from_file.split(ARGS_SPLIT_TOKEN)
else:
_, model_name = args.model_from_file, "model"
try:
model_module = load_module_from_file(args.model_from_file)
except Exception:
raise ValueError(f"Failed to import file {args.model_from_file}.")
try:
model = getattr(model_module, model_name)
except AttributeError:
raise AttributeError(
f"Variable `{model_name}` not found in module {args.model_from_file}."
)
if not isinstance(model, textattack.models.wrappers.ModelWrapper):
raise TypeError(
f"Variable `{model_name}` must be of type "
f"``textattack.models.ModelWrapper``, got type {type(model)}."
)
elif (args.model in HUGGINGFACE_MODELS) or args.model_from_huggingface:
# Support loading models automatically from the HuggingFace model hub.
model_name = (
HUGGINGFACE_MODELS[args.model]
if (args.model in HUGGINGFACE_MODELS)
else args.model_from_huggingface
)
colored_model_name = textattack.shared.utils.color_text(
model_name, color="blue", method="ansi"
)
textattack.shared.logger.info(
f"Loading pre-trained model from HuggingFace model repository: {colored_model_name}"
)
model = transformers.AutoModelForSequenceClassification.from_pretrained(
model_name
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_name, use_fast=True
)
model = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer)
elif args.model in TEXTATTACK_MODELS:
# Support loading TextAttack pre-trained models via just a keyword.
colored_model_name = textattack.shared.utils.color_text(
args.model, color="blue", method="ansi"
)
if args.model.startswith("lstm"):
textattack.shared.logger.info(
f"Loading pre-trained TextAttack LSTM: {colored_model_name}"
)
model = textattack.models.helpers.LSTMForClassification.from_pretrained(
args.model
)
elif args.model.startswith("cnn"):
textattack.shared.logger.info(
f"Loading pre-trained TextAttack CNN: {colored_model_name}"
)
model = (
textattack.models.helpers.WordCNNForClassification.from_pretrained(
args.model
)
)
elif args.model.startswith("t5"):
model = textattack.models.helpers.T5ForTextToText.from_pretrained(
args.model
)
else:
raise ValueError(f"Unknown textattack model {args.model}")
# Choose the approprate model wrapper (based on whether or not this is
# a HuggingFace model).
if isinstance(model, textattack.models.helpers.T5ForTextToText):
model = textattack.models.wrappers.HuggingFaceModelWrapper(
model, model.tokenizer
)
else:
model = textattack.models.wrappers.PyTorchModelWrapper(
model, model.tokenizer
)
elif args.model and os.path.exists(args.model):
# Support loading TextAttack-trained models via just their folder path.
# If `args.model` is a path/directory, let's assume it was a model
# trained with textattack, and try and load it.
if os.path.exists(os.path.join(args.model, "t5-wrapper-config.json")):
model = textattack.models.helpers.T5ForTextToText.from_pretrained(
args.model
)
model = textattack.models.wrappers.HuggingFaceModelWrapper(
model, model.tokenizer
)
elif os.path.exists(os.path.join(args.model, "config.json")):
with open(os.path.join(args.model, "config.json")) as f:
config = json.load(f)
model_class = config["architectures"]
if (
model_class == "LSTMForClassification"
or model_class == "WordCNNForClassification"
):
model = eval(
f"textattack.models.helpers.{model_class}.from_pretrained({args.model})"
)
model = textattack.models.wrappers.PyTorchModelWrapper(
model, model.tokenizer
)
else:
# assume the model is from HuggingFace.
model = (
transformers.AutoModelForSequenceClassification.from_pretrained(
args.model
)
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.model, use_fast=True
)
model = textattack.models.wrappers.HuggingFaceModelWrapper(
model, tokenizer
)
else:
raise ValueError(f"Error: unsupported TextAttack model {args.model}")
assert isinstance(
model, textattack.models.wrappers.ModelWrapper
), "`model` must be of type `textattack.models.wrappers.ModelWrapper`."
return model
|