Spaces:
Running
Running
File size: 41,652 Bytes
4a1df2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 |
"""
Trainer Class
=============
"""
import collections
import json
import logging
import math
import os
import scipy
import torch
import tqdm
import transformers
import textattack
from textattack.shared.utils import logger
from .attack import Attack
from .attack_args import AttackArgs
from .attack_results import MaximizedAttackResult, SuccessfulAttackResult
from .attacker import Attacker
from .model_args import HUGGINGFACE_MODELS
from .models.helpers import LSTMForClassification, WordCNNForClassification
from .models.wrappers import ModelWrapper
from .training_args import CommandLineTrainingArgs, TrainingArgs
class Trainer:
"""Trainer is training and eval loop for adversarial training.
It is designed to work with PyTorch and Transformers models.
Args:
model_wrapper (:class:`~textattack.models.wrappers.ModelWrapper`):
Model wrapper containing both the model and the tokenizer.
task_type (:obj:`str`, `optional`, defaults to :obj:`"classification"`):
The task that the model is trained to perform.
Currently, :class:`~textattack.Trainer` supports two tasks: (1) :obj:`"classification"`, (2) :obj:`"regression"`.
attack (:class:`~textattack.Attack`):
:class:`~textattack.Attack` used to generate adversarial examples for training.
train_dataset (:class:`~textattack.datasets.Dataset`):
Dataset for training.
eval_dataset (:class:`~textattack.datasets.Dataset`):
Dataset for evaluation
training_args (:class:`~textattack.TrainingArgs`):
Arguments for training.
Example::
>>> import textattack
>>> import transformers
>>> model = transformers.AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
>>> tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model_wrapper = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer)
>>> # We only use DeepWordBugGao2018 to demonstration purposes.
>>> attack = textattack.attack_recipes.DeepWordBugGao2018.build(model_wrapper)
>>> train_dataset = textattack.datasets.HuggingFaceDataset("imdb", split="train")
>>> eval_dataset = textattack.datasets.HuggingFaceDataset("imdb", split="test")
>>> # Train for 3 epochs with 1 initial clean epochs, 1000 adversarial examples per epoch, learning rate of 5e-5, and effective batch size of 32 (8x4).
>>> training_args = textattack.TrainingArgs(
... num_epochs=3,
... num_clean_epochs=1,
... num_train_adv_examples=1000,
... learning_rate=5e-5,
... per_device_train_batch_size=8,
... gradient_accumulation_steps=4,
... log_to_tb=True,
... )
>>> trainer = textattack.Trainer(
... model_wrapper,
... "classification",
... attack,
... train_dataset,
... eval_dataset,
... training_args
... )
>>> trainer.train()
.. note::
When using :class:`~textattack.Trainer` with `parallel=True` in :class:`~textattack.TrainingArgs`,
make sure to protect the “entry point” of the program by using :obj:`if __name__ == '__main__':`.
If not, each worker process used for generating adversarial examples will execute the training code again.
"""
def __init__(
self,
model_wrapper,
task_type="classification",
attack=None,
train_dataset=None,
eval_dataset=None,
training_args=None,
):
assert isinstance(
model_wrapper, ModelWrapper
), f"`model_wrapper` must be of type `textattack.models.wrappers.ModelWrapper`, but got type `{type(model_wrapper)}`."
# TODO: Support seq2seq training
assert task_type in {
"classification",
"regression",
}, '`task_type` must either be "classification" or "regression"'
if attack:
assert isinstance(
attack, Attack
), f"`attack` argument must be of type `textattack.Attack`, but got type of `{type(attack)}`."
if id(model_wrapper) != id(attack.goal_function.model):
logger.warn(
"`model_wrapper` and the victim model of `attack` are not the same model."
)
if train_dataset:
assert isinstance(
train_dataset, textattack.datasets.Dataset
), f"`train_dataset` must be of type `textattack.datasets.Dataset`, but got type `{type(train_dataset)}`."
if eval_dataset:
assert isinstance(
eval_dataset, textattack.datasets.Dataset
), f"`eval_dataset` must be of type `textattack.datasets.Dataset`, but got type `{type(eval_dataset)}`."
if training_args:
assert isinstance(
training_args, TrainingArgs
), f"`training_args` must be of type `textattack.TrainingArgs`, but got type `{type(training_args)}`."
else:
training_args = TrainingArgs()
if not hasattr(model_wrapper, "model"):
raise ValueError("Cannot detect `model` in `model_wrapper`")
else:
assert isinstance(
model_wrapper.model, torch.nn.Module
), f"`model` in `model_wrapper` must be of type `torch.nn.Module`, but got type `{type(model_wrapper.model)}`."
if not hasattr(model_wrapper, "tokenizer"):
raise ValueError("Cannot detect `tokenizer` in `model_wrapper`")
self.model_wrapper = model_wrapper
self.task_type = task_type
self.attack = attack
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.training_args = training_args
self._metric_name = (
"pearson_correlation" if self.task_type == "regression" else "accuracy"
)
if self.task_type == "regression":
self.loss_fct = torch.nn.MSELoss(reduction="none")
else:
self.loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
self._global_step = 0
def _generate_adversarial_examples(self, epoch):
"""Generate adversarial examples using attacker."""
assert (
self.attack is not None
), "`attack` is `None` but attempting to generate adversarial examples."
base_file_name = f"attack-train-{epoch}"
log_file_name = os.path.join(self.training_args.output_dir, base_file_name)
logger.info("Attacking model to generate new adversarial training set...")
if isinstance(self.training_args.num_train_adv_examples, float):
num_train_adv_examples = math.ceil(
len(self.train_dataset) * self.training_args.num_train_adv_examples
)
else:
num_train_adv_examples = self.training_args.num_train_adv_examples
# Use Different AttackArgs based on num_train_adv_examples value.
# If num_train_adv_examples >= 0 , num_train_adv_examples is
# set as number of successful examples.
# If num_train_adv_examples == -1 , num_examples is set to -1 to
# generate example for all of training data.
if num_train_adv_examples >= 0:
attack_args = AttackArgs(
num_successful_examples=num_train_adv_examples,
num_examples_offset=0,
query_budget=self.training_args.query_budget_train,
shuffle=True,
parallel=self.training_args.parallel,
num_workers_per_device=self.training_args.attack_num_workers_per_device,
disable_stdout=True,
silent=True,
log_to_txt=log_file_name + ".txt",
log_to_csv=log_file_name + ".csv",
)
elif num_train_adv_examples == -1:
# set num_examples when num_train_adv_examples = -1
attack_args = AttackArgs(
num_examples=num_train_adv_examples,
num_examples_offset=0,
query_budget=self.training_args.query_budget_train,
shuffle=True,
parallel=self.training_args.parallel,
num_workers_per_device=self.training_args.attack_num_workers_per_device,
disable_stdout=True,
silent=True,
log_to_txt=log_file_name + ".txt",
log_to_csv=log_file_name + ".csv",
)
else:
assert False, "num_train_adv_examples is negative and not equal to -1."
attacker = Attacker(self.attack, self.train_dataset, attack_args=attack_args)
results = attacker.attack_dataset()
attack_types = collections.Counter(r.__class__.__name__ for r in results)
total_attacks = (
attack_types["SuccessfulAttackResult"] + attack_types["FailedAttackResult"]
)
success_rate = attack_types["SuccessfulAttackResult"] / total_attacks * 100
logger.info(f"Total number of attack results: {len(results)}")
logger.info(
f"Attack success rate: {success_rate:.2f}% [{attack_types['SuccessfulAttackResult']} / {total_attacks}]"
)
# TODO: This will produce a bug if we need to manipulate ground truth output.
# To Fix Issue #498 , We need to add the Non Output columns in one tuple to represent input columns
# Since adversarial_example won't be an input to the model , we will have to remove it from the input
# dictionary in collate_fn
adversarial_examples = [
(
tuple(r.perturbed_result.attacked_text._text_input.values())
+ ("adversarial_example",),
r.perturbed_result.ground_truth_output,
)
for r in results
if isinstance(r, (SuccessfulAttackResult, MaximizedAttackResult))
]
# Name for column indicating if an example is adversarial is set as "_example_type".
adversarial_dataset = textattack.datasets.Dataset(
adversarial_examples,
input_columns=self.train_dataset.input_columns + ("_example_type",),
label_map=self.train_dataset.label_map,
label_names=self.train_dataset.label_names,
output_scale_factor=self.train_dataset.output_scale_factor,
shuffle=False,
)
return adversarial_dataset
def _print_training_args(
self, total_training_steps, train_batch_size, num_clean_epochs
):
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(self.train_dataset)}")
logger.info(f" Num epochs = {self.training_args.num_epochs}")
logger.info(f" Num clean epochs = {num_clean_epochs}")
logger.info(
f" Instantaneous batch size per device = {self.training_args.per_device_train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {train_batch_size * self.training_args.gradient_accumulation_steps}"
)
logger.info(
f" Gradient accumulation steps = {self.training_args.gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {total_training_steps}")
def _save_model_checkpoint(
self, model, tokenizer, step=None, epoch=None, best=False, last=False
):
# Save model checkpoint
if step:
dir_name = f"checkpoint-step-{step}"
if epoch:
dir_name = f"checkpoint-epoch-{epoch}"
if best:
dir_name = "best_model"
if last:
dir_name = "last_model"
output_dir = os.path.join(self.training_args.output_dir, dir_name)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if isinstance(model, torch.nn.DataParallel):
model = model.module
if isinstance(model, (WordCNNForClassification, LSTMForClassification)):
model.save_pretrained(output_dir)
elif isinstance(model, transformers.PreTrainedModel):
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
else:
state_dict = {k: v.cpu() for k, v in model.state_dict().items()}
torch.save(
state_dict,
os.path.join(output_dir, "pytorch_model.bin"),
)
def _tb_log(self, log, step):
if not hasattr(self, "_tb_writer"):
from torch.utils.tensorboard import SummaryWriter
self._tb_writer = SummaryWriter(self.training_args.tb_log_dir)
self._tb_writer.add_hparams(self.training_args.__dict__, {})
self._tb_writer.flush()
for key in log:
self._tb_writer.add_scalar(key, log[key], step)
def _wandb_log(self, log, step):
if not hasattr(self, "_wandb_init"):
global wandb
import wandb
self._wandb_init = True
wandb.init(
project=self.training_args.wandb_project,
config=self.training_args.__dict__,
)
wandb.log(log, step=step)
def get_optimizer_and_scheduler(self, model, num_training_steps):
"""Returns optimizer and scheduler to use for training. If you are
overriding this method and do not want to use a scheduler, simply
return :obj:`None` for scheduler.
Args:
model (:obj:`torch.nn.Module`):
Model to be trained. Pass its parameters to optimizer for training.
num_training_steps (:obj:`int`):
Number of total training steps.
Returns:
Tuple of optimizer and scheduler :obj:`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler._LRScheduler]`
"""
if isinstance(model, torch.nn.DataParallel):
model = model.module
if isinstance(model, transformers.PreTrainedModel):
# Reference https://huggingface.co/transformers/training.html
param_optimizer = list(model.named_parameters())
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in param_optimizer
if not any(nd in n for nd in no_decay)
],
"weight_decay": self.training_args.weight_decay,
},
{
"params": [
p for n, p in param_optimizer if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
optimizer = transformers.optimization.AdamW(
optimizer_grouped_parameters, lr=self.training_args.learning_rate
)
if isinstance(self.training_args.num_warmup_steps, float):
num_warmup_steps = math.ceil(
self.training_args.num_warmup_steps * num_training_steps
)
else:
num_warmup_steps = self.training_args.num_warmup_steps
scheduler = transformers.optimization.get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
)
else:
optimizer = torch.optim.Adam(
filter(lambda x: x.requires_grad, model.parameters()),
lr=self.training_args.learning_rate,
)
scheduler = None
return optimizer, scheduler
def get_train_dataloader(self, dataset, adv_dataset, batch_size):
"""Returns the :obj:`torch.utils.data.DataLoader` for training.
Args:
dataset (:class:`~textattack.datasets.Dataset`):
Original training dataset.
adv_dataset (:class:`~textattack.datasets.Dataset`):
Adversarial examples generated from the original training dataset. :obj:`None` if no adversarial attack takes place.
batch_size (:obj:`int`):
Batch size for training.
Returns:
:obj:`torch.utils.data.DataLoader`
"""
# TODO: Add pairing option where we can pair original examples with adversarial examples.
# Helper functions for collating data
def collate_fn(data):
input_texts = []
targets = []
is_adv_sample = []
for item in data:
if "_example_type" in item[0].keys():
# Get example type value from OrderedDict and remove it
adv = item[0].pop("_example_type")
# with _example_type removed from item[0] OrderedDict
# all other keys should be part of input
_input, label = item
if adv != "adversarial_example":
raise ValueError(
"`item` has length of 3 but last element is not for marking if the item is an `adversarial example`."
)
else:
is_adv_sample.append(True)
else:
# else `len(item)` is 2.
_input, label = item
is_adv_sample.append(False)
if isinstance(_input, collections.OrderedDict):
_input = tuple(_input.values())
else:
_input = tuple(_input)
if len(_input) == 1:
_input = _input[0]
input_texts.append(_input)
targets.append(label)
return input_texts, torch.tensor(targets), torch.tensor(is_adv_sample)
if adv_dataset:
dataset = torch.utils.data.ConcatDataset([dataset, adv_dataset])
train_dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn,
pin_memory=True,
)
return train_dataloader
def get_eval_dataloader(self, dataset, batch_size):
"""Returns the :obj:`torch.utils.data.DataLoader` for evaluation.
Args:
dataset (:class:`~textattack.datasets.Dataset`):
Dataset to use for evaluation.
batch_size (:obj:`int`):
Batch size for evaluation.
Returns:
:obj:`torch.utils.data.DataLoader`
"""
# Helper functions for collating data
def collate_fn(data):
input_texts = []
targets = []
for _input, label in data:
if isinstance(_input, collections.OrderedDict):
_input = tuple(_input.values())
else:
_input = tuple(_input)
if len(_input) == 1:
_input = _input[0]
input_texts.append(_input)
targets.append(label)
return input_texts, torch.tensor(targets)
eval_dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn,
pin_memory=True,
)
return eval_dataloader
def training_step(self, model, tokenizer, batch):
"""Perform a single training step on a batch of inputs.
Args:
model (:obj:`torch.nn.Module`):
Model to train.
tokenizer:
Tokenizer used to tokenize input text.
batch (:obj:`tuple[list[str], torch.Tensor, torch.Tensor]`):
By default, this will be a tuple of input texts, targets, and boolean tensor indicating if the sample is an adversarial example.
.. note::
If you override the :meth:`get_train_dataloader` method, then shape/type of :obj:`batch` will depend on how you created your batch.
Returns:
:obj:`tuple[torch.Tensor, torch.Tensor, torch.Tensor]` where
- **loss**: :obj:`torch.FloatTensor` of shape 1 containing the loss.
- **preds**: :obj:`torch.FloatTensor` of model's prediction for the batch.
- **targets**: :obj:`torch.Tensor` of model's targets (e.g. labels, target values).
"""
input_texts, targets, is_adv_sample = batch
_targets = targets
targets = targets.to(textattack.shared.utils.device)
if isinstance(model, transformers.PreTrainedModel) or (
isinstance(model, torch.nn.DataParallel)
and isinstance(model.module, transformers.PreTrainedModel)
):
input_ids = tokenizer(
input_texts,
padding="max_length",
return_tensors="pt",
truncation=True,
)
input_ids.to(textattack.shared.utils.device)
logits = model(**input_ids)[0]
else:
input_ids = tokenizer(input_texts)
if not isinstance(input_ids, torch.Tensor):
input_ids = torch.tensor(input_ids)
input_ids = input_ids.to(textattack.shared.utils.device)
logits = model(input_ids)
if self.task_type == "regression":
loss = self.loss_fct(logits.squeeze(), targets.squeeze())
preds = logits
else:
loss = self.loss_fct(logits, targets)
preds = logits.argmax(dim=-1)
sample_weights = torch.ones(
is_adv_sample.size(), device=textattack.shared.utils.device
)
sample_weights[is_adv_sample] *= self.training_args.alpha
loss = loss * sample_weights
loss = torch.mean(loss)
preds = preds.cpu()
return loss, preds, _targets
def evaluate_step(self, model, tokenizer, batch):
"""Perform a single evaluation step on a batch of inputs.
Args:
model (:obj:`torch.nn.Module`):
Model to train.
tokenizer:
Tokenizer used to tokenize input text.
batch (:obj:`tuple[list[str], torch.Tensor]`):
By default, this will be a tuple of input texts and target tensors.
.. note::
If you override the :meth:`get_eval_dataloader` method, then shape/type of :obj:`batch` will depend on how you created your batch.
Returns:
:obj:`tuple[torch.Tensor, torch.Tensor]` where
- **preds**: :obj:`torch.FloatTensor` of model's prediction for the batch.
- **targets**: :obj:`torch.Tensor` of model's targets (e.g. labels, target values).
"""
input_texts, targets = batch
_targets = targets
targets = targets.to(textattack.shared.utils.device)
if isinstance(model, transformers.PreTrainedModel):
input_ids = tokenizer(
input_texts,
padding="max_length",
return_tensors="pt",
truncation=True,
)
input_ids.to(textattack.shared.utils.device)
logits = model(**input_ids)[0]
else:
input_ids = tokenizer(input_texts)
if not isinstance(input_ids, torch.Tensor):
input_ids = torch.tensor(input_ids)
input_ids = input_ids.to(textattack.shared.utils.device)
logits = model(input_ids)
if self.task_type == "regression":
preds = logits
else:
preds = logits.argmax(dim=-1)
return preds.cpu(), _targets
def train(self):
"""Train the model on given training dataset."""
if not self.train_dataset:
raise ValueError("No `train_dataset` available for training.")
textattack.shared.utils.set_seed(self.training_args.random_seed)
if not os.path.exists(self.training_args.output_dir):
os.makedirs(self.training_args.output_dir)
# Save logger writes to file
log_txt_path = os.path.join(self.training_args.output_dir, "train_log.txt")
fh = logging.FileHandler(log_txt_path)
fh.setLevel(logging.DEBUG)
logger.addHandler(fh)
logger.info(f"Writing logs to {log_txt_path}.")
# Save original self.training_args to file
args_save_path = os.path.join(
self.training_args.output_dir, "training_args.json"
)
with open(args_save_path, "w", encoding="utf-8") as f:
json.dump(self.training_args.__dict__, f)
logger.info(f"Wrote original training args to {args_save_path}.")
num_gpus = torch.cuda.device_count()
tokenizer = self.model_wrapper.tokenizer
model = self.model_wrapper.model
if self.training_args.parallel and num_gpus > 1:
# TODO: torch.nn.parallel.DistributedDataParallel
# Supposedly faster than DataParallel, but requires more work to setup properly.
model = torch.nn.DataParallel(model)
logger.info(f"Training on {num_gpus} GPUs via `torch.nn.DataParallel`.")
train_batch_size = self.training_args.per_device_train_batch_size * num_gpus
else:
train_batch_size = self.training_args.per_device_train_batch_size
if self.attack is None:
num_clean_epochs = self.training_args.num_epochs
else:
num_clean_epochs = self.training_args.num_clean_epochs
total_clean_training_steps = (
math.ceil(
len(self.train_dataset)
/ (train_batch_size * self.training_args.gradient_accumulation_steps)
)
* num_clean_epochs
)
# calculate total_adv_training_data_length based on type of
# num_train_adv_examples.
# if num_train_adv_examples is float , num_train_adv_examples is a portion of train_dataset.
if isinstance(self.training_args.num_train_adv_examples, float):
total_adv_training_data_length = (
len(self.train_dataset) * self.training_args.num_train_adv_examples
)
# if num_train_adv_examples is int and >=0 then it is taken as value.
elif (
isinstance(self.training_args.num_train_adv_examples, int)
and self.training_args.num_train_adv_examples >= 0
):
total_adv_training_data_length = self.training_args.num_train_adv_examples
# if num_train_adv_examples is = -1 , we generate all possible adv examples.
# Max number of all possible adv examples would be equal to train_dataset.
else:
total_adv_training_data_length = len(self.train_dataset)
# Based on total_adv_training_data_length calculation , find total total_adv_training_steps
total_adv_training_steps = math.ceil(
(len(self.train_dataset) + total_adv_training_data_length)
/ (train_batch_size * self.training_args.gradient_accumulation_steps)
) * (self.training_args.num_epochs - num_clean_epochs)
total_training_steps = total_clean_training_steps + total_adv_training_steps
optimizer, scheduler = self.get_optimizer_and_scheduler(
model, total_training_steps
)
self._print_training_args(
total_training_steps, train_batch_size, num_clean_epochs
)
model.to(textattack.shared.utils.device)
# Variables across epochs
self._total_loss = 0.0
self._current_loss = 0.0
self._last_log_step = 0
# `best_score` is used to keep track of the best model across training.
# Could be loss, accuracy, or other metrics.
best_eval_score = 0.0
best_eval_score_epoch = 0
best_model_path = None
epochs_since_best_eval_score = 0
for epoch in range(1, self.training_args.num_epochs + 1):
logger.info("==========================================================")
logger.info(f"Epoch {epoch}")
if self.attack and epoch > num_clean_epochs:
if (
epoch - num_clean_epochs - 1
) % self.training_args.attack_epoch_interval == 0:
# only generate a new adversarial training set every self.training_args.attack_period epochs after the clean epochs
# adv_dataset is instance of `textattack.datasets.Dataset`
model.eval()
adv_dataset = self._generate_adversarial_examples(epoch)
model.train()
model.to(textattack.shared.utils.device)
else:
adv_dataset = None
else:
logger.info(f"Running clean epoch {epoch}/{num_clean_epochs}")
adv_dataset = None
train_dataloader = self.get_train_dataloader(
self.train_dataset, adv_dataset, train_batch_size
)
model.train()
# Epoch variables
all_preds = []
all_targets = []
prog_bar = tqdm.tqdm(
train_dataloader,
desc="Iteration",
position=0,
leave=True,
dynamic_ncols=True,
)
for step, batch in enumerate(prog_bar):
loss, preds, targets = self.training_step(model, tokenizer, batch)
if isinstance(model, torch.nn.DataParallel):
loss = loss.mean()
loss = loss / self.training_args.gradient_accumulation_steps
loss.backward()
loss = loss.item()
self._total_loss += loss
self._current_loss += loss
all_preds.append(preds)
all_targets.append(targets)
if (step + 1) % self.training_args.gradient_accumulation_steps == 0:
optimizer.step()
if scheduler:
scheduler.step()
optimizer.zero_grad()
self._global_step += 1
if self._global_step > 0:
prog_bar.set_description(
f"Loss {self._total_loss/self._global_step:.5f}"
)
# TODO: Better way to handle TB and Wandb logging
if (self._global_step > 0) and (
self._global_step % self.training_args.logging_interval_step == 0
):
lr_to_log = (
scheduler.get_last_lr()[0]
if scheduler
else self.training_args.learning_rate
)
if self._global_step - self._last_log_step >= 1:
loss_to_log = round(
self._current_loss
/ (self._global_step - self._last_log_step),
4,
)
else:
loss_to_log = round(self._current_loss, 4)
log = {"train/loss": loss_to_log, "train/learning_rate": lr_to_log}
if self.training_args.log_to_tb:
self._tb_log(log, self._global_step)
if self.training_args.log_to_wandb:
self._wandb_log(log, self._global_step)
self._current_loss = 0.0
self._last_log_step = self._global_step
# Save model checkpoint to file.
if self.training_args.checkpoint_interval_steps:
if (
self._global_step > 0
and (
self._global_step
% self.training_args.checkpoint_interval_steps
)
== 0
):
self._save_model_checkpoint(
model, tokenizer, step=self._global_step
)
preds = torch.cat(all_preds)
targets = torch.cat(all_targets)
if self._metric_name == "accuracy":
correct_predictions = (preds == targets).sum().item()
accuracy = correct_predictions / len(targets)
metric_log = {"train/train_accuracy": accuracy}
logger.info(f"Train accuracy: {accuracy*100:.2f}%")
else:
pearson_correlation, pearson_pvalue = scipy.stats.pearsonr(
preds, targets
)
metric_log = {
"train/pearson_correlation": pearson_correlation,
"train/pearson_pvalue": pearson_pvalue,
}
logger.info(f"Train Pearson correlation: {pearson_correlation:.4f}%")
if len(targets) > 0:
if self.training_args.log_to_tb:
self._tb_log(metric_log, epoch)
if self.training_args.log_to_wandb:
metric_log["epoch"] = epoch
self._wandb_log(metric_log, self._global_step)
# Evaluate after each epoch.
eval_score = self.evaluate()
if self.training_args.log_to_tb:
self._tb_log({f"eval/{self._metric_name}": eval_score}, epoch)
if self.training_args.log_to_wandb:
self._wandb_log(
{f"eval/{self._metric_name}": eval_score, "epoch": epoch},
self._global_step,
)
if (
self.training_args.checkpoint_interval_epochs
and (epoch % self.training_args.checkpoint_interval_epochs) == 0
):
self._save_model_checkpoint(model, tokenizer, epoch=epoch)
if eval_score > best_eval_score:
best_eval_score = eval_score
best_eval_score_epoch = epoch
epochs_since_best_eval_score = 0
self._save_model_checkpoint(model, tokenizer, best=True)
logger.info(
f"Best score found. Saved model to {self.training_args.output_dir}/best_model/"
)
else:
epochs_since_best_eval_score += 1
if self.training_args.early_stopping_epochs and (
epochs_since_best_eval_score
> self.training_args.early_stopping_epochs
):
logger.info(
f"Stopping early since it's been {self.training_args.early_stopping_epochs} steps since validation score increased."
)
break
if self.training_args.log_to_tb:
self._tb_writer.flush()
# Finish training
if isinstance(model, torch.nn.DataParallel):
model = model.module
if self.training_args.load_best_model_at_end:
best_model_path = os.path.join(self.training_args.output_dir, "best_model")
if hasattr(model, "from_pretrained"):
model = model.__class__.from_pretrained(best_model_path)
else:
model = model.load_state_dict(
torch.load(os.path.join(best_model_path, "pytorch_model.bin"))
)
if self.training_args.save_last:
self._save_model_checkpoint(model, tokenizer, last=True)
self.model_wrapper.model = model
self._write_readme(best_eval_score, best_eval_score_epoch, train_batch_size)
def evaluate(self):
"""Evaluate the model on given evaluation dataset."""
if not self.eval_dataset:
raise ValueError("No `eval_dataset` available for training.")
logging.info("Evaluating model on evaluation dataset.")
model = self.model_wrapper.model
tokenizer = self.model_wrapper.tokenizer
model.eval()
all_preds = []
all_targets = []
if isinstance(model, torch.nn.DataParallel):
num_gpus = torch.cuda.device_count()
eval_batch_size = self.training_args.per_device_eval_batch_size * num_gpus
else:
eval_batch_size = self.training_args.per_device_eval_batch_size
eval_dataloader = self.get_eval_dataloader(self.eval_dataset, eval_batch_size)
with torch.no_grad():
for step, batch in enumerate(eval_dataloader):
preds, targets = self.evaluate_step(model, tokenizer, batch)
all_preds.append(preds)
all_targets.append(targets)
preds = torch.cat(all_preds)
targets = torch.cat(all_targets)
if self.task_type == "regression":
pearson_correlation, pearson_p_value = scipy.stats.pearsonr(preds, targets)
eval_score = pearson_correlation
else:
correct_predictions = (preds == targets).sum().item()
accuracy = correct_predictions / len(targets)
eval_score = accuracy
if self._metric_name == "accuracy":
logger.info(f"Eval {self._metric_name}: {eval_score*100:.2f}%")
else:
logger.info(f"Eval {self._metric_name}: {eval_score:.4f}%")
return eval_score
def _write_readme(self, best_eval_score, best_eval_score_epoch, train_batch_size):
if isinstance(self.training_args, CommandLineTrainingArgs):
model_name = self.training_args.model_name_or_path
elif isinstance(self.model_wrapper.model, transformers.PreTrainedModel):
if (
hasattr(self.model_wrapper.model.config, "_name_or_path")
and self.model_wrapper.model.config._name_or_path in HUGGINGFACE_MODELS
):
# TODO Better way than just checking HUGGINGFACE_MODELS ?
model_name = self.model_wrapper.model.config._name_or_path
elif hasattr(self.model_wrapper.model.config, "model_type"):
model_name = self.model_wrapper.model.config.model_type
else:
model_name = ""
else:
model_name = ""
if model_name:
model_name = f"`{model_name}`"
if (
isinstance(self.training_args, CommandLineTrainingArgs)
and self.training_args.model_max_length
):
model_max_length = self.training_args.model_max_length
elif isinstance(
self.model_wrapper.model,
(
transformers.PreTrainedModel,
LSTMForClassification,
WordCNNForClassification,
),
):
model_max_length = self.model_wrapper.tokenizer.model_max_length
else:
model_max_length = None
if model_max_length:
model_max_length_str = f" a maximum sequence length of {model_max_length},"
else:
model_max_length_str = ""
if isinstance(
self.train_dataset, textattack.datasets.HuggingFaceDataset
) and hasattr(self.train_dataset, "_name"):
dataset_name = self.train_dataset._name
if hasattr(self.train_dataset, "_subset"):
dataset_name += f" ({self.train_dataset._subset})"
elif isinstance(
self.eval_dataset, textattack.datasets.HuggingFaceDataset
) and hasattr(self.eval_dataset, "_name"):
dataset_name = self.eval_dataset._name
if hasattr(self.eval_dataset, "_subset"):
dataset_name += f" ({self.eval_dataset._subset})"
else:
dataset_name = None
if dataset_name:
dataset_str = (
"and the `{dataset_name}` dataset loaded using the `datasets` library"
)
else:
dataset_str = ""
loss_func = (
"mean squared error" if self.task_type == "regression" else "cross-entropy"
)
metric_name = (
"pearson correlation" if self.task_type == "regression" else "accuracy"
)
epoch_info = f"{best_eval_score_epoch} epoch" + (
"s" if best_eval_score_epoch > 1 else ""
)
readme_text = f"""
## TextAttack Model Card
This {model_name} model was fine-tuned using TextAttack{dataset_str}. The model was fine-tuned
for {self.training_args.num_epochs} epochs with a batch size of {train_batch_size},
{model_max_length_str} and an initial learning rate of {self.training_args.learning_rate}.
Since this was a {self.task_type} task, the model was trained with a {loss_func} loss function.
The best score the model achieved on this task was {best_eval_score}, as measured by the
eval set {metric_name}, found after {epoch_info}.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
"""
readme_save_path = os.path.join(self.training_args.output_dir, "README.md")
with open(readme_save_path, "w", encoding="utf-8") as f:
f.write(readme_text.strip() + "\n")
logger.info(f"Wrote README to {readme_save_path}.")
|