Spaces:
Sleeping
Sleeping
""" | |
Dataset Class | |
====================== | |
TextAttack allows users to provide their own dataset or load from HuggingFace. | |
""" | |
from collections import OrderedDict | |
import random | |
import torch | |
class Dataset(torch.utils.data.Dataset): | |
"""Basic class for dataset. It operates as a map-style dataset, fetching | |
data via :meth:`__getitem__` and :meth:`__len__` methods. | |
.. note:: | |
This class subclasses :obj:`torch.utils.data.Dataset` and therefore can be treated as a regular PyTorch Dataset. | |
Args: | |
dataset (:obj:`list[tuple]`): | |
A list of :obj:`(input, output)` pairs. | |
If :obj:`input` consists of multiple fields (e.g. "premise" and "hypothesis" for SNLI), | |
:obj:`input` must be of the form :obj:`(input_1, input_2, ...)` and :obj:`input_columns` parameter must be set. | |
:obj:`output` can either be an integer representing labels for classification or a string for seq2seq tasks. | |
input_columns (:obj:`list[str]`, `optional`, defaults to :obj:`["text"]`): | |
List of column names of inputs in order. | |
label_map (:obj:`dict[int, int]`, `optional`, defaults to :obj:`None`): | |
Mapping if output labels of the dataset should be re-mapped. Useful if model was trained with a different label arrangement. | |
For example, if dataset's arrangement is 0 for `Negative` and 1 for `Positive`, but model's label | |
arrangement is 1 for `Negative` and 0 for `Positive`, passing :obj:`{0: 1, 1: 0}` will remap the dataset's label to match with model's arrangements. | |
Could also be used to remap literal labels to numerical labels (e.g. :obj:`{"positive": 1, "negative": 0}`). | |
label_names (:obj:`list[str]`, `optional`, defaults to :obj:`None`): | |
List of label names in corresponding order (e.g. :obj:`["World", "Sports", "Business", "Sci/Tech"]` for AG-News dataset). | |
If not set, labels will printed as is (e.g. "0", "1", ...). This should be set to :obj:`None` for non-classification datasets. | |
output_scale_factor (:obj:`float`, `optional`, defaults to :obj:`None`): | |
Factor to divide ground-truth outputs by. Generally, TextAttack goal functions require model outputs between 0 and 1. | |
Some datasets are regression tasks, in which case this is necessary. | |
shuffle (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to shuffle the underlying dataset. | |
.. note:: | |
Generally not recommended to shuffle the underlying dataset. Shuffling can be performed using DataLoader or by shuffling the order of indices we attack. | |
Examples:: | |
>>> import textattack | |
>>> # Example of sentiment-classification dataset | |
>>> data = [("I enjoyed the movie a lot!", 1), ("Absolutely horrible film.", 0), ("Our family had a fun time!", 1)] | |
>>> dataset = textattack.datasets.Dataset(data) | |
>>> dataset[1:2] | |
>>> # Example for pair of sequence inputs (e.g. SNLI) | |
>>> data = [("A man inspects the uniform of a figure in some East Asian country.", "The man is sleeping"), 1)] | |
>>> dataset = textattack.datasets.Dataset(data, input_columns=("premise", "hypothesis")) | |
>>> # Example for seq2seq | |
>>> data = [("J'aime le film.", "I love the movie.")] | |
>>> dataset = textattack.datasets.Dataset(data) | |
""" | |
def __init__( | |
self, | |
dataset, | |
input_columns=["text"], | |
label_map=None, | |
label_names=None, | |
output_scale_factor=None, | |
shuffle=False, | |
): | |
self._dataset = dataset | |
self.input_columns = input_columns | |
self.label_map = label_map | |
self.label_names = label_names | |
if label_map: | |
# If labels are remapped, the label names have to be remapped as well. | |
self.label_names = [ | |
self.label_names[self.label_map[i]] for i in self.label_map | |
] | |
self.shuffled = shuffle | |
self.output_scale_factor = output_scale_factor | |
if shuffle: | |
random.shuffle(self._dataset) | |
def _format_as_dict(self, example): | |
output = example[1] | |
if self.label_map: | |
output = self.label_map[output] | |
if self.output_scale_factor: | |
output = output / self.output_scale_factor | |
if isinstance(example[0], str): | |
if len(self.input_columns) != 1: | |
raise ValueError( | |
"Mismatch between the number of columns in `input_columns` and number of columns of actual input." | |
) | |
input_dict = OrderedDict([(self.input_columns[0], example[0])]) | |
else: | |
if len(self.input_columns) != len(example[0]): | |
raise ValueError( | |
"Mismatch between the number of columns in `input_columns` and number of columns of actual input." | |
) | |
input_dict = OrderedDict( | |
[(c, example[0][i]) for i, c in enumerate(self.input_columns)] | |
) | |
return input_dict, output | |
def shuffle(self): | |
random.shuffle(self._dataset) | |
self.shuffled = True | |
def filter_by_labels_(self, labels_to_keep): | |
"""Filter items by their labels for classification datasets. Performs | |
in-place filtering. | |
Args: | |
labels_to_keep (:obj:`Union[Set, Tuple, List, Iterable]`): | |
Set, tuple, list, or iterable of integers representing labels. | |
""" | |
if not isinstance(labels_to_keep, set): | |
labels_to_keep = set(labels_to_keep) | |
self._dataset = filter(lambda x: x[1] in labels_to_keep, self._dataset) | |
def __getitem__(self, i): | |
"""Return i-th sample.""" | |
if isinstance(i, int): | |
return self._format_as_dict(self._dataset[i]) | |
else: | |
# `idx` could be a slice or an integer. if it's a slice, | |
# return the formatted version of the proper slice of the list | |
return [self._format_as_dict(ex) for ex in self._dataset[i]] | |
def __len__(self): | |
"""Returns the size of dataset.""" | |
return len(self._dataset) | |