PFEemp2024's picture
solving GPU error for previous version
4a1df2e
"""
Dataset Class
======================
TextAttack allows users to provide their own dataset or load from HuggingFace.
"""
from collections import OrderedDict
import random
import torch
class Dataset(torch.utils.data.Dataset):
"""Basic class for dataset. It operates as a map-style dataset, fetching
data via :meth:`__getitem__` and :meth:`__len__` methods.
.. note::
This class subclasses :obj:`torch.utils.data.Dataset` and therefore can be treated as a regular PyTorch Dataset.
Args:
dataset (:obj:`list[tuple]`):
A list of :obj:`(input, output)` pairs.
If :obj:`input` consists of multiple fields (e.g. "premise" and "hypothesis" for SNLI),
:obj:`input` must be of the form :obj:`(input_1, input_2, ...)` and :obj:`input_columns` parameter must be set.
:obj:`output` can either be an integer representing labels for classification or a string for seq2seq tasks.
input_columns (:obj:`list[str]`, `optional`, defaults to :obj:`["text"]`):
List of column names of inputs in order.
label_map (:obj:`dict[int, int]`, `optional`, defaults to :obj:`None`):
Mapping if output labels of the dataset should be re-mapped. Useful if model was trained with a different label arrangement.
For example, if dataset's arrangement is 0 for `Negative` and 1 for `Positive`, but model's label
arrangement is 1 for `Negative` and 0 for `Positive`, passing :obj:`{0: 1, 1: 0}` will remap the dataset's label to match with model's arrangements.
Could also be used to remap literal labels to numerical labels (e.g. :obj:`{"positive": 1, "negative": 0}`).
label_names (:obj:`list[str]`, `optional`, defaults to :obj:`None`):
List of label names in corresponding order (e.g. :obj:`["World", "Sports", "Business", "Sci/Tech"]` for AG-News dataset).
If not set, labels will printed as is (e.g. "0", "1", ...). This should be set to :obj:`None` for non-classification datasets.
output_scale_factor (:obj:`float`, `optional`, defaults to :obj:`None`):
Factor to divide ground-truth outputs by. Generally, TextAttack goal functions require model outputs between 0 and 1.
Some datasets are regression tasks, in which case this is necessary.
shuffle (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to shuffle the underlying dataset.
.. note::
Generally not recommended to shuffle the underlying dataset. Shuffling can be performed using DataLoader or by shuffling the order of indices we attack.
Examples::
>>> import textattack
>>> # Example of sentiment-classification dataset
>>> data = [("I enjoyed the movie a lot!", 1), ("Absolutely horrible film.", 0), ("Our family had a fun time!", 1)]
>>> dataset = textattack.datasets.Dataset(data)
>>> dataset[1:2]
>>> # Example for pair of sequence inputs (e.g. SNLI)
>>> data = [("A man inspects the uniform of a figure in some East Asian country.", "The man is sleeping"), 1)]
>>> dataset = textattack.datasets.Dataset(data, input_columns=("premise", "hypothesis"))
>>> # Example for seq2seq
>>> data = [("J'aime le film.", "I love the movie.")]
>>> dataset = textattack.datasets.Dataset(data)
"""
def __init__(
self,
dataset,
input_columns=["text"],
label_map=None,
label_names=None,
output_scale_factor=None,
shuffle=False,
):
self._dataset = dataset
self.input_columns = input_columns
self.label_map = label_map
self.label_names = label_names
if label_map:
# If labels are remapped, the label names have to be remapped as well.
self.label_names = [
self.label_names[self.label_map[i]] for i in self.label_map
]
self.shuffled = shuffle
self.output_scale_factor = output_scale_factor
if shuffle:
random.shuffle(self._dataset)
def _format_as_dict(self, example):
output = example[1]
if self.label_map:
output = self.label_map[output]
if self.output_scale_factor:
output = output / self.output_scale_factor
if isinstance(example[0], str):
if len(self.input_columns) != 1:
raise ValueError(
"Mismatch between the number of columns in `input_columns` and number of columns of actual input."
)
input_dict = OrderedDict([(self.input_columns[0], example[0])])
else:
if len(self.input_columns) != len(example[0]):
raise ValueError(
"Mismatch between the number of columns in `input_columns` and number of columns of actual input."
)
input_dict = OrderedDict(
[(c, example[0][i]) for i, c in enumerate(self.input_columns)]
)
return input_dict, output
def shuffle(self):
random.shuffle(self._dataset)
self.shuffled = True
def filter_by_labels_(self, labels_to_keep):
"""Filter items by their labels for classification datasets. Performs
in-place filtering.
Args:
labels_to_keep (:obj:`Union[Set, Tuple, List, Iterable]`):
Set, tuple, list, or iterable of integers representing labels.
"""
if not isinstance(labels_to_keep, set):
labels_to_keep = set(labels_to_keep)
self._dataset = filter(lambda x: x[1] in labels_to_keep, self._dataset)
def __getitem__(self, i):
"""Return i-th sample."""
if isinstance(i, int):
return self._format_as_dict(self._dataset[i])
else:
# `idx` could be a slice or an integer. if it's a slice,
# return the formatted version of the proper slice of the list
return [self._format_as_dict(ex) for ex in self._dataset[i]]
def __len__(self):
"""Returns the size of dataset."""
return len(self._dataset)