Spaces:
Running
Running
""" | |
HuggingFaceDataset Class | |
========================= | |
TextAttack allows users to provide their own dataset or load from HuggingFace. | |
""" | |
import collections | |
import datasets | |
import textattack | |
from .dataset import Dataset | |
def _cb(s): | |
"""Colors some text blue for printing to the terminal.""" | |
return textattack.shared.utils.color_text(str(s), color="blue", method="ansi") | |
def get_datasets_dataset_columns(dataset): | |
"""Common schemas for datasets found in dataset hub.""" | |
schema = set(dataset.column_names) | |
if {"premise", "hypothesis", "label"} <= schema: | |
input_columns = ("premise", "hypothesis") | |
output_column = "label" | |
elif {"question", "sentence", "label"} <= schema: | |
input_columns = ("question", "sentence") | |
output_column = "label" | |
elif {"sentence1", "sentence2", "label"} <= schema: | |
input_columns = ("sentence1", "sentence2") | |
output_column = "label" | |
elif {"question1", "question2", "label"} <= schema: | |
input_columns = ("question1", "question2") | |
output_column = "label" | |
elif {"question", "sentence", "label"} <= schema: | |
input_columns = ("question", "sentence") | |
output_column = "label" | |
elif {"context", "question", "title", "answers"} <= schema: | |
# Common schema for SQUAD dataset | |
input_columns = ("title", "context", "question") | |
output_column = "answers" | |
elif {"text", "label"} <= schema: | |
input_columns = ("text",) | |
output_column = "label" | |
elif {"sentence", "label"} <= schema: | |
input_columns = ("sentence",) | |
output_column = "label" | |
elif {"document", "summary"} <= schema: | |
input_columns = ("document",) | |
output_column = "summary" | |
elif {"content", "summary"} <= schema: | |
input_columns = ("content",) | |
output_column = "summary" | |
elif {"label", "review"} <= schema: | |
input_columns = ("review",) | |
output_column = "label" | |
else: | |
raise ValueError( | |
f"Unsupported dataset schema {schema}. Try passing your own `dataset_columns` argument." | |
) | |
return input_columns, output_column | |
class HuggingFaceDataset(Dataset): | |
"""Loads a dataset from 🤗 Datasets and prepares it as a TextAttack dataset. | |
Args: | |
name_or_dataset (:obj:`Union[str, datasets.Dataset]`): | |
The dataset name as :obj:`str` or actual :obj:`datasets.Dataset` object. | |
If it's your custom :obj:`datasets.Dataset` object, please pass the input and output columns via :obj:`dataset_columns` argument. | |
subset (:obj:`str`, `optional`, defaults to :obj:`None`): | |
The subset of the main dataset. Dataset will be loaded as :obj:`datasets.load_dataset(name, subset)`. | |
split (:obj:`str`, `optional`, defaults to :obj:`"train"`): | |
The split of the dataset. | |
dataset_columns (:obj:`tuple(list[str], str))`, `optional`, defaults to :obj:`None`): | |
Pair of :obj:`list[str]` representing list of input column names (e.g. :obj:`["premise", "hypothesis"]`) | |
and :obj:`str` representing the output column name (e.g. :obj:`label`). If not set, we will try to automatically determine column names from known designs. | |
label_map (:obj:`dict[int, int]`, `optional`, defaults to :obj:`None`): | |
Mapping if output labels of the dataset should be re-mapped. Useful if model was trained with a different label arrangement. | |
For example, if dataset's arrangement is 0 for `Negative` and 1 for `Positive`, but model's label | |
arrangement is 1 for `Negative` and 0 for `Positive`, passing :obj:`{0: 1, 1: 0}` will remap the dataset's label to match with model's arrangements. | |
Could also be used to remap literal labels to numerical labels (e.g. :obj:`{"positive": 1, "negative": 0}`). | |
label_names (:obj:`list[str]`, `optional`, defaults to :obj:`None`): | |
List of label names in corresponding order (e.g. :obj:`["World", "Sports", "Business", "Sci/Tech"]` for AG-News dataset). | |
If not set, labels will printed as is (e.g. "0", "1", ...). This should be set to :obj:`None` for non-classification datasets. | |
output_scale_factor (:obj:`float`, `optional`, defaults to :obj:`None`): | |
Factor to divide ground-truth outputs by. Generally, TextAttack goal functions require model outputs between 0 and 1. | |
Some datasets are regression tasks, in which case this is necessary. | |
shuffle (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to shuffle the underlying dataset. | |
.. note:: | |
Generally not recommended to shuffle the underlying dataset. Shuffling can be performed using DataLoader or by shuffling the order of indices we attack. | |
""" | |
def __init__( | |
self, | |
name_or_dataset, | |
subset=None, | |
split="train", | |
dataset_columns=None, | |
label_map=None, | |
label_names=None, | |
output_scale_factor=None, | |
shuffle=False, | |
): | |
if isinstance(name_or_dataset, datasets.Dataset): | |
self._dataset = name_or_dataset | |
else: | |
self._name = name_or_dataset | |
self._subset = subset | |
self._dataset = datasets.load_dataset(self._name, subset)[split] | |
subset_print_str = f", subset {_cb(subset)}" if subset else "" | |
textattack.shared.logger.info( | |
f"Loading {_cb('datasets')} dataset {_cb(self._name)}{subset_print_str}, split {_cb(split)}." | |
) | |
# Input/output column order, like (('premise', 'hypothesis'), 'label') | |
( | |
self.input_columns, | |
self.output_column, | |
) = dataset_columns or get_datasets_dataset_columns(self._dataset) | |
if not isinstance(self.input_columns, (list, tuple)): | |
raise ValueError( | |
"First element of `dataset_columns` must be a list or a tuple." | |
) | |
self.label_map = label_map | |
self.output_scale_factor = output_scale_factor | |
if label_names: | |
self.label_names = label_names | |
else: | |
try: | |
self.label_names = self._dataset.features[self.output_column].names | |
except (KeyError, AttributeError): | |
# This happens when the dataset doesn't have 'features' or a 'label' column. | |
self.label_names = None | |
# If labels are remapped, the label names have to be remapped as well. | |
if self.label_names and label_map: | |
self.label_names = [ | |
self.label_names[self.label_map[i]] for i in self.label_map | |
] | |
self.shuffled = shuffle | |
if shuffle: | |
self._dataset.shuffle() | |
def _format_as_dict(self, example): | |
input_dict = collections.OrderedDict( | |
[(c, example[c]) for c in self.input_columns] | |
) | |
output = example[self.output_column] | |
if self.label_map: | |
output = self.label_map[output] | |
if self.output_scale_factor: | |
output = output / self.output_scale_factor | |
return (input_dict, output) | |
def filter_by_labels_(self, labels_to_keep): | |
"""Filter items by their labels for classification datasets. Performs | |
in-place filtering. | |
Args: | |
labels_to_keep (:obj:`Union[Set, Tuple, List, Iterable]`): | |
Set, tuple, list, or iterable of integers representing labels. | |
""" | |
if not isinstance(labels_to_keep, set): | |
labels_to_keep = set(labels_to_keep) | |
self._dataset = self._dataset.filter( | |
lambda x: x[self.output_column] in labels_to_keep | |
) | |
def __getitem__(self, i): | |
"""Return i-th sample.""" | |
if isinstance(i, int): | |
return self._format_as_dict(self._dataset[i]) | |
else: | |
# `idx` could be a slice or an integer. if it's a slice, | |
# return the formatted version of the proper slice of the list | |
return [ | |
self._format_as_dict(self._dataset[j]) for j in range(i.start, i.stop) | |
] | |
def shuffle(self): | |
self._dataset.shuffle() | |
self.shuffled = True | |