File size: 8,009 Bytes
dc780c5
837713d
 
d842ce0
a07119c
 
 
837713d
 
 
d842ce0
837713d
 
d842ce0
 
 
 
837713d
d842ce0
 
837713d
c36a256
 
837713d
 
 
2b1d793
837713d
85185da
d842ce0
837713d
a1cb9c1
 
d842ce0
 
a1cb9c1
 
 
 
d842ce0
 
a1cb9c1
 
837713d
d842ce0
a07119c
 
d842ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07119c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d5a618
d842ce0
 
 
c36a256
837713d
 
276c4d0
d842ce0
 
 
 
 
 
276c4d0
837713d
d842ce0
837713d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d842ce0
837713d
dc780c5
 
 
d842ce0
dc780c5
9ab236a
dc780c5
 
 
 
 
 
d842ce0
85185da
d842ce0
 
dc780c5
d842ce0
837713d
 
d842ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837713d
d842ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837713d
50a7cb9
d842ce0
cf93985
 
d842ce0
cf93985
 
d842ce0
88dfd37
837713d
 
a07119c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from string import punctuation
import re
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed

# Device setup
device = "cuda:0" if torch.cuda.is_available() else "cpu"

# SmolLM setup
checkpoint = "HuggingFaceTB/SmolLM-360M"
smol_tokenizer = AutoTokenizer.from_pretrained(checkpoint)
smol_model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)

# Original model setup
repo_id = "ylacombe/p-m-e"
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
text_tokenizer = AutoTokenizer.from_pretrained(repo_id)
description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)

SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42

default_text = "La voix humaine est un instrument de musique au-dessus de tous les autres."
default_description = "a woman with a slightly low-pitched voice speaks slowly in a clear and close-sounding environment, but her delivery is quite monotone."
examples = [
    [
        "La voix humaine est un instrument de musique au-dessus de tous les autres.",
        "a woman with a slightly low-pitched voice speaks slowly in a clear and close-sounding environment, but her delivery is quite monotone.",
        True,
        None,
    ],
    [
        "The human voice is nature's most perfect instrument.",
        "A woman with a slightly low-pitched voice speaks slowly in a very distant-sounding environment with a clean audio quality, delivering her message in a very monotone manner.",
        True,
        None,
    ],
]

number_normalizer = EnglishNumberNormalizer()

def format_description(raw_description, do_format=True):
    if not do_format:
        return raw_description
        
    prompt = f"""Format this voice description to match exactly:
"a [gender] with a [pitch] voice speaks [speed] in a [environment], [delivery style]"
Where:
- gender: man/woman
- pitch: slightly low-pitched/moderate pitch/high-pitched
- speed: slowly/moderately/quickly
- environment: close-sounding and clear/distant-sounding and noisy
- delivery style: with monotone delivery/with animated delivery

Description to format: {raw_description}
Formatted description:"""
    
    inputs = smol_tokenizer.encode(prompt, return_tensors="pt").to(device)
    outputs = smol_model.generate(
        inputs,
        max_length=200,
        num_return_sequences=1,
        temperature=0.7,
        do_sample=True,
        pad_token_id=smol_tokenizer.eos_token_id
    )
    formatted = smol_tokenizer.decode(outputs[0], skip_special_tokens=True)
    return formatted.split("Formatted description:")[-1].strip()

def preprocess(text):
    text = number_normalizer(text).strip()
    text = text.replace("-", " ")
    if text[-1] not in punctuation:
        text = f"{text}."
    
    abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
    
    def separate_abb(chunk):
        chunk = chunk.replace(".","")
        return " ".join(chunk)
    
    abbreviations = re.findall(abbreviations_pattern, text)
    for abv in abbreviations:
        if abv in text:
            text = text.replace(abv, separate_abb(abv))
    return text

@spaces.GPU
def gen_tts(text, description, do_format=True):
    formatted_desc = format_description(description, do_format)
    inputs = description_tokenizer(formatted_desc.strip(), return_tensors="pt").to(device)
    prompt = text_tokenizer(preprocess(text), return_tensors="pt").to(device)

    set_seed(SEED)
    generation = model.generate(
        input_ids=inputs.input_ids, 
        prompt_input_ids=prompt.input_ids, 
        attention_mask=inputs.attention_mask, 
        prompt_attention_mask=prompt.attention_mask, 
        do_sample=True, 
        temperature=1.0
    )
    audio_arr = generation.cpu().numpy().squeeze()
    return formatted_desc, (SAMPLE_RATE, audio_arr)

css = """
        #share-btn-container {
            display: flex;
            padding-left: 0.5rem !important;
            padding-right: 0.5rem !important;
            background-color: #000000;
            justify-content: center;
            align-items: center;
            border-radius: 9999px !important; 
            width: 13rem;
            margin-top: 10px;
            margin-left: auto;
            flex: unset !important;
        }
        #share-btn {
            all: initial;
            color: #ffffff;
            font-weight: 600;
            cursor: pointer;
            font-family: 'IBM Plex Sans', sans-serif;
            margin-left: 0.5rem !important;
            padding-top: 0.25rem !important;
            padding-bottom: 0.25rem !important;
            right:0;
        }
        #share-btn * {
            all: unset !important;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
"""

with gr.Blocks(css=css) as block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 700px; margin: 0 auto;">
              <div style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;">
                <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
                  Multi Parler-TTS 🗣️
                </h1>
              </div>
            </div>
        """
    )
    gr.HTML(
        """<p><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> is a training and inference library for
high-fidelity text-to-speech (TTS) models.</p> 
<p>This multilingual model supports French, Spanish, Italian, Portuguese, Polish, German, Dutch, and English. It generates high-quality speech with features that can be controlled using a simple text prompt.</p>
<p>By default, Parler-TTS generates 🎲 random voice characteristics. To ensure 🎯 <b>speaker consistency</b> across generations, try to use consistent descriptions in your prompts.</p>"""
    )
    
    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(
                label="Input Text", 
                lines=2, 
                value=default_text
            )
            raw_description = gr.Textbox(
                label="Voice Description", 
                lines=2, 
                value=default_description
            )
            do_format = gr.Checkbox(
                label="Reformat description using SmolLM", 
                value=True
            )
            formatted_description = gr.Textbox(
                label="Used Description", 
                lines=2
            )
            generate_button = gr.Button("Generate Audio", variant="primary")
        with gr.Column():
            audio_out = gr.Audio(label="Parler-TTS generation", type="numpy")

    generate_button.click(
        fn=gen_tts,
        inputs=[input_text, raw_description, do_format],
        outputs=[formatted_description, audio_out]
    )

    gr.Examples(
        examples=examples,
        fn=gen_tts,
        inputs=[input_text, raw_description, do_format],
        outputs=[formatted_description, audio_out],
        cache_examples=True
    )

    gr.HTML(
        """<p>Tips for ensuring good generation:
        <ul>
            <li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li>
            <li>Punctuation can be used to control the prosody of the generations</li>
            <li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li>
        </ul>
        </p>"""
    )

block.queue()
block.launch(share=True)