Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,011 Bytes
dc780c5 837713d d842ce0 a07119c 837713d 20431ec 837713d d842ce0 837713d 80cff80 837713d d842ce0 5f88d62 837713d c36a256 837713d 2b1d793 837713d 85185da 65ea63c 837713d b4eef1e 65ea63c a1cb9c1 65ea63c a1cb9c1 65ea63c b4eef1e 837713d d842ce0 65ea63c a07119c d842ce0 b5f75f8 03d612a 80cff80 b5f75f8 44bb8b9 b5f75f8 44bb8b9 80cff80 44bb8b9 03d612a d842ce0 80cff80 03d612a 44bb8b9 80cff80 44bb8b9 d842ce0 a07119c 8d5a618 d842ce0 c36a256 837713d 276c4d0 d842ce0 276c4d0 837713d d842ce0 837713d 03d612a 837713d d842ce0 837713d dc780c5 d842ce0 dc780c5 9ab236a dc780c5 d842ce0 85185da 5f88d62 d842ce0 dc780c5 d842ce0 837713d d842ce0 65ea63c d842ce0 837713d d842ce0 837713d 50a7cb9 d842ce0 cf93985 d842ce0 cf93985 d842ce0 88dfd37 837713d a07119c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from string import punctuation
import re
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
from transformers import pipeline
# Device setup
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# Gemma setup
pipe = pipeline(
"text-generation",
model="google/gemma-2-2b-it",
model_kwargs={"torch_dtype": torch.bfloat16},
device=device
)
# Original model setup
repo_id = "parler-tts/parler-tts-mini-multilingual"
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
text_tokenizer = AutoTokenizer.from_pretrained(repo_id)
description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42
default_text = "La voix humaine est un instrument de musique au-dessus de tous les autres."
default_description = "a woman with a slightly low- pitched voice speaks slowly in a clear and close- sounding environment, but her delivery is quite monotone."
examples = [
# English
[
"The human voice is nature's most perfect instrument.",
"Aa woman with a slightly low- pitched voice speaks slowly in a very distant- sounding environment with a clean audio quality, delivering her message in a very monotone manner.",
None,
],
# French
[
"La voix humaine est un instrument de musique au-dessus de tous les autres.",
"a woman with a slightly low- pitched voice speaks slowly in a clear and close- sounding environment, but her delivery is quite monotone.",
None,
],
# Spanish
[
"La voz es el reflejo del alma en el espejo del tiempo.",
"a man with a moderate pitch voice speaks slowly with a slightly animated delivery in a very close- sounding environment with minimal background noise.",
None,
],
# Italian
[
"La voce umana è la più bella musica che esista al mondo.",
"a man with a moderate pitch speaks slowly in a very noisy environment that sounds very distant, delivering his words in a monotone manner.",
None,
],
# Portuguese
[
"A voz é o espelho da alma e o som do coração.",
"a man speaks slowly in a distant- sounding environment with a clean audio quality, delivering his message in a monotone voice at a moderate pitch. ",
None,
],
# Polish
[
"Głos ludzki jest najpiękniejszym instrumentem świata.",
"a man with a moderate pitch speaks in a monotone manner at a slightly slow pace, but the recording is quite noisy and sounds very distant.",
None,
],
# German
[
"Die menschliche Stimme ist das schönste Instrument der Welt.",
"a man with a moderate pitch speaks slowly in a noisy environment with a flat tone of voice, creating a slightly close- sounding effect.",
None,
],
# Dutch
[
"De menselijke stem is het mooiste instrument dat er bestaat.",
"a man with a moderate pitch speaks slightly slowly with an expressive and animated delivery in a very close- sounding environment with a bit of background noise.",
None,
]
]
number_normalizer = EnglishNumberNormalizer()
def format_description(raw_description, do_format=True):
if not do_format:
return raw_description
# Extract defaults from the raw description or use fallbacks
defaults = {
"gender": "woman" if "woman" in raw_description.lower() else "man",
"pitch": "moderate pitch",
"speed": "slowly",
"environment": "close-sounding and clear",
"delivery": "with monotone delivery"
}
messages = [{
"role": "user",
"content": f"""Format this voice description and fill in any missing parameters with defaults:
"a [gender] with a [pitch] voice speaks [speed] in a [environment], [delivery]"
Required parameters (use these exact terms):
- gender: {defaults['gender']} if not specified
- pitch: {defaults['pitch']} if not specified
- speed: {defaults['speed']} if not specified
- environment: {defaults['environment']} if not specified
- delivery: {defaults['delivery']} if not specified
Input: {raw_description}
Return only the formatted description, nothing else."""
}]
outputs = pipe(messages, max_new_tokens=100)
formatted = outputs[0]["generated_text"][-1]["content"].strip()
if "a woman" in formatted.lower() or "a man" in formatted.lower():
return formatted
return raw_description
def preprocess(text):
text = number_normalizer(text).strip()
text = text.replace("-", " ")
if text[-1] not in punctuation:
text = f"{text}."
abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
def separate_abb(chunk):
chunk = chunk.replace(".","")
return " ".join(chunk)
abbreviations = re.findall(abbreviations_pattern, text)
for abv in abbreviations:
if abv in text:
text = text.replace(abv, separate_abb(abv))
return text
@spaces.GPU
def gen_tts(text, description, do_format=True):
formatted_desc = format_description(description, do_format)
inputs = description_tokenizer(formatted_desc.strip(), return_tensors="pt").to(device)
prompt = text_tokenizer(preprocess(text), return_tensors="pt").to(device)
set_seed(SEED)
generation = model.generate(
input_ids=inputs.input_ids,
prompt_input_ids=prompt.input_ids,
attention_mask=inputs.attention_mask,
prompt_attention_mask=prompt.attention_mask,
do_sample=True,
temperature=1.0
)
audio_arr = generation.cpu().numpy().squeeze()
return formatted_desc, (SAMPLE_RATE, audio_arr)
# Rest of the code remains unchanged
css = """
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
width: 13rem;
margin-top: 10px;
margin-left: auto;
flex: unset !important;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.25rem !important;
padding-bottom: 0.25rem !important;
right:0;
}
#share-btn * {
all: unset !important;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
with gr.Blocks(css=css) as block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;">
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
Multi Parler-TTS 🗣️
</h1>
</div>
</div>
"""
)
gr.HTML(
"""<p><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> is a training and inference library for
high-fidelity text-to-speech (TTS) models.</p>
<p>This <a href="https://huggingface.co/parler-tts/parler-tts-mini-multilingual">multilingual model</a> supports French, Spanish, Italian, Portuguese, Polish, German, Dutch, and English. It generates high-quality speech with features that can be controlled using a simple text prompt.</p>
<p>By default, Parler-TTS generates 🎲 random voice characteristics. To ensure 🎯 <b>speaker consistency</b> across generations, try to use consistent descriptions in your prompts.</p>"""
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="Input Text",
lines=2,
value=default_text
)
raw_description = gr.Textbox(
label="Voice Description",
lines=2,
value=default_description
)
do_format = gr.Checkbox(
label="Reformat description using Gemma 2b",
value=True
)
formatted_description = gr.Textbox(
label="Used Description",
lines=2
)
generate_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy")
generate_button.click(
fn=gen_tts,
inputs=[input_text, raw_description, do_format],
outputs=[formatted_description, audio_out]
)
gr.Examples(
examples=examples,
fn=gen_tts,
inputs=[input_text, raw_description, do_format],
outputs=[formatted_description, audio_out],
cache_examples=True
)
gr.HTML(
"""<p>Tips for ensuring good generation:
<ul>
<li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li>
<li>Punctuation can be used to control the prosody of the generations</li>
<li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li>
</ul>
</p>"""
)
block.queue()
block.launch(share=True) |