File size: 4,303 Bytes
75c605c
 
 
 
 
 
 
 
 
 
c1a08cd
75c605c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0397646
75c605c
 
0397646
75c605c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0397646
75c605c
 
 
 
 
 
 
 
 
 
 
0397646
faae0b4
75c605c
 
 
 
 
 
a684e5f
75c605c
 
 
 
0397646
75c605c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0397646
75c605c
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import subprocess
import tempfile
import time
from pathlib import Path

import cv2
import gradio as gr

from inferer import Inferer

pipeline = Inferer("nateraw/yolov6s", device='cuda')
print(f"GPU on? {'🟒' if pipeline.device.type != 'cpu' else 'πŸ”΄'}")

def fn_image(image, conf_thres, iou_thres):
    return pipeline(image, conf_thres, iou_thres)


def fn_video(video_file, conf_thres, iou_thres, start_sec, duration):
    start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
    end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))

    suffix = Path(video_file).suffix

    clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
    subprocess.call(
        f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
    )

    # Reader of clip file
    cap = cv2.VideoCapture(clip_temp_file.name)

    # This is an intermediary temp file where we'll write the video to
    # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
    # with ffmpeg at the end of the function here.
    with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
        out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 120, (1280, 720))

        num_frames = 0
        max_frames = duration * 120
        while cap.isOpened():
            try:
                ret, frame = cap.read()
                if not ret:
                    break
            except Exception as e:
                print(e)
                continue

            out.write(pipeline(frame, conf_thres, iou_thres))
            num_frames += 1
            print("Processed {} frames".format(num_frames))
            if num_frames == max_frames:
                break

        out.release()

        # Aforementioned hackiness
        out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
        subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())

    return out_file.name


image_interface = gr.Interface(
    fn=fn_image,
    inputs=[
        "image",
        gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
        gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
    ],
    outputs=gr.Image(type="file"),
    examples=[["example_1.jpg", 0.5, 0.5], ["example_2.jpg", 0.25, 0.45], ["example_3.jpg", 0.25, 0.45]],
    title="Human Detection",
    description=(
        "Gradio demo for Human detection on images. To use it, simply upload your image or click one of the"
        " examples to load them."
    ),
    allow_flagging=False,
    allow_screenshot=False,
)

video_interface = gr.Interface(
    fn=fn_video,
    inputs=[
        gr.Video(type="file"),
        gr.Slider(0, 1, value=0.25, label="Confidence Threshold"),
        gr.Slider(0, 1, value=0.45, label="IOU Threshold"),
        gr.Slider(0, 120, value=0, label="Start Second", step=1),
        gr.Slider(0, 120 if pipeline.device.type != 'cpu' else 60, value=120, label="Duration", step=1),
    ],
    outputs=gr.Video(type="file", format="mp4"),
    examples=[
        ["example_1.mp4", 0.25, 0.45, 0, 2],
        ["example_2.mp4", 0.25, 0.45, 5, 3],
        ["example_3.mp4", 0.25, 0.45, 6, 3],
        ["classroom.mp4", 0.25, 0.45, 5, 3],
    ],
    title="Human Detection",
    description=(
        "Gradio demo for Human detection on videos. To use it, simply upload your video or click one of the"
        " examples to load them."
    ),
    allow_flagging=False,
    allow_screenshot=False,
)

webcam_interface = gr.Interface(
    fn_image,
    inputs=[
        gr.Image(source='webcam', streaming=True),
        gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
        gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
    ],
    outputs=gr.Image(type="file"),
    live=True,
    title="Human Detection",
    description=(
        "Gradio demo for Human detection on real time webcam. To use it, simply allow the browser to access"
        " your webcam."
    ),
    allow_flagging=False,
    allow_screenshot=False,
)

if __name__ == "__main__":
    gr.TabbedInterface(
        [video_interface, image_interface, webcam_interface],
        ["Run on Videos!", "Run on Images!", "Run on Webcam!"],
    ).launch()