Spaces:
Sleeping
Sleeping
import os | |
import google.generativeai as genai | |
from PIL import Image | |
import io | |
import streamlit as st | |
import re | |
# Google Gemini API Key | |
GOOGLE_API_KEY = os.getenv("AIzaSyD0GxR2J1JxGic807Cc89Jq6MB4aDJYgDc") | |
# Configure Google Gemini with your API key | |
genai.configure(api_key="AIzaSyD0GxR2J1JxGic807Cc89Jq6MB4aDJYgDc") | |
# Create a GenerativeModel instance | |
model = genai.GenerativeModel("gemini-1.5-flash") | |
def extract_text_with_gemini(image, keyword=None): | |
if keyword: | |
prompt = f""" | |
1. Extract all text from this image. | |
2. Search for the keyword '{keyword}' (case-insensitive) in the extracted text. | |
3. Provide the output as HTML, maintaining the general layout and structure of the document. | |
4. Highlight all instances of the keyword '{keyword}' with a yellow background using HTML span tags. | |
For example: <span style="background-color: yellow;">keyword</span> | |
5. If the keyword is not found, simply return the extracted text without highlighting. | |
""" | |
else: | |
prompt = """ | |
Extract all text from this image. Provide the output as plain text, maintaining the general layout and structure of the document. Include all visible text, headings, and any important information. | |
""" | |
response = model.generate_content([prompt, image]) | |
text = response.text | |
if not keyword: | |
# Remove HTML tags from the extracted text when no keyword is provided | |
text = re.sub(r'<[^>]+>', '', text) | |
return text | |
def extract_ner_with_gemini(image): | |
prompt = """ | |
Analyze this image and extract all Named Entities (NER) present in the text. | |
Categorize them into types such as Person, Organization, Location, Date, etc. | |
Provide the output as a formatted list with categories and entities. | |
""" | |
response = model.generate_content([prompt, image]) | |
ner_text = response.text | |
return ner_text | |
def search_and_highlight(full_text, keyword): | |
pattern = re.compile(re.escape(keyword), re.IGNORECASE) | |
matches = list(pattern.finditer(full_text)) | |
if not matches: | |
return [], full_text | |
highlighted_text = full_text | |
results = [] | |
for match in reversed(matches): | |
start, end = match.span() | |
context_start = max(0, start - 50) | |
context_end = min(len(full_text), end + 50) | |
context = full_text[context_start:context_end] | |
# Highlight for results list | |
highlighted_context = ( | |
context[:start-context_start] + | |
f'<span style="background-color: yellow;">{context[start-context_start:end-context_start]}</span>' + | |
context[end-context_start:] | |
) | |
results.append(highlighted_context) | |
# Highlight for full text | |
highlighted_text = ( | |
highlighted_text[:start] + | |
f'<span style="background-color: yellow;">{highlighted_text[start:end]}</span>' + | |
highlighted_text[end:] | |
) | |
return results, highlighted_text | |
def app(): | |
st.title("Image OCR, Search, and NER Extraction") | |
uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) | |
if uploaded_file is not None: | |
# Open and display the image | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Select search method | |
search_method = st.radio("Choose search method:", | |
("Extract text first, then search", | |
"Search while extracting text (using Gemini API)")) | |
search_keyword = st.text_input("Enter a keyword to search (or press Enter to exit)") | |
col1, col2 = st.columns(2) | |
with col1: | |
if st.button("Process Image"): | |
if search_method == "Extract text first, then search": | |
print("Extracting text from the image...") | |
extracted_text = extract_text_with_gemini(image) | |
st.subheader("Extracted Text:") | |
st.write(extracted_text) | |
if search_keyword: | |
results, highlighted_text = search_and_highlight(extracted_text, search_keyword) | |
if results: | |
st.subheader(f"Keyword '{search_keyword}' found in the extracted text:") | |
for i, result in enumerate(results, 1): | |
st.markdown(f"{i}. ...{result}...", unsafe_allow_html=True) | |
st.subheader("Full Text with Highlighted Keywords:") | |
st.markdown(highlighted_text, unsafe_allow_html=True) | |
else: | |
st.write(f"Keyword '{search_keyword}' not found in the extracted text.") | |
else: # Search while extracting text using Gemini API | |
print("Extracting text and searching keyword using Gemini API...") | |
highlighted_text = extract_text_with_gemini(image, search_keyword) | |
st.subheader("Extracted Text with Highlighted Keyword:") | |
st.markdown(highlighted_text, unsafe_allow_html=True) | |
st.write("OCR and search completed.") | |
with col2: | |
if st.button("Extract NER"): | |
print("Extracting Named Entities...") | |
ner_results = extract_ner_with_gemini(image) | |
st.subheader("Named Entities Extracted:") | |
st.write(ner_results) | |
if __name__ == "__main__": | |
app() |