import google.generativeai as genai from PIL import Image import os import cv2 # Used to securely store your API key import os import google.generativeai as genai os.environ["GOOGLE_API_KEY"] = "AIzaSyDGtjV-u_m3Szi_LTa2B1CHiFqmCZLWFDk" genai.configure() # Configure the Gemini API # Initialize the Gemini Vision Pro model model = genai.GenerativeModel('gemini-1.5-flash') def process_frame_with_gemini(frame, mode="image"): if mode == "image": # Convert OpenCV frame to PIL Image image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) elif mode == "audio": # For audio, we'll use a placeholder image and include the audio path in the prompt image = Image.new('RGB', (1, 1), color='white') audio_path = frame # In this case, 'frame' is actually the audio file path # Process the image or audio with Gemini Vision Pro if mode == "image": response = model.generate_content(["Describe the content of this frame", image]) else: response = model.generate_content(["Transcribe the audio file at this path", audio_path, image]) return response.text def summarize_with_gemini(text, max_words): text_model = genai.GenerativeModel('gemini-pro') response = text_model.generate_content(f"Summarize the following text in about {max_words} words: {text}") return response.text def extract_code_with_gemini(text): text_model = genai.GenerativeModel('gemini-pro') response = text_model.generate_content(f"Extract and format any code snippets from the following text: {text}") return response.text