Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Initialize summarization pipeline
|
5 |
+
summarizer = pipeline("summarization", model="t5-small", revision="main")
|
6 |
+
|
7 |
+
# Function to summarize text
|
8 |
+
def summarize_text(text, model):
|
9 |
+
summary = model(text)[0]['summary_text']
|
10 |
+
return summary
|
11 |
+
|
12 |
+
# Function to read PDF and summarize
|
13 |
+
def summarize_pdf(pdf_file, model):
|
14 |
+
import fitz # PyMuPDF
|
15 |
+
with fitz.open(pdf_file.name) as doc:
|
16 |
+
text = ""
|
17 |
+
for page in doc:
|
18 |
+
text += page.get_text()
|
19 |
+
return summarize_text(text, model)
|
20 |
+
|
21 |
+
# Gradio Interface
|
22 |
+
def summarize(input_text, uploaded_file):
|
23 |
+
if input_text:
|
24 |
+
summary = summarize_text(input_text, summarizer)
|
25 |
+
else:
|
26 |
+
summary = summarize_pdf(uploaded_file, summarizer)
|
27 |
+
return summary
|
28 |
+
|
29 |
+
inputs = [
|
30 |
+
gr.Textbox(lines=10, label="Enter Text to Summarize"),
|
31 |
+
gr.File(label="Upload PDF file")
|
32 |
+
]
|
33 |
+
output = gr.Textbox(label="Summary")
|
34 |
+
|
35 |
+
gr.Interface(
|
36 |
+
fn=summarize,
|
37 |
+
inputs=inputs,
|
38 |
+
outputs=output,
|
39 |
+
title="Text Summarization App",
|
40 |
+
description="Summarize text or PDF files using pre-trained models.",
|
41 |
+
theme="compact", # Example theme
|
42 |
+
layout="horizontal" # Example layout
|
43 |
+
).launch()
|