from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) def main(): st.title("English to German") with st.form("text_field"): text = st.text_area('enter some english word:') # clicked==True only when the button is clicked clicked = st.form_submit_button("Submit") if clicked: results = classifier([text]) st.json(results) if __name__ == "__main__": main() QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)