Spaces:
Sleeping
Sleeping
File size: 11,275 Bytes
1e6c6f2 bef3741 1e6c6f2 bef3741 64322bd 0550b9b 64322bd 0550b9b 1e6c6f2 0550b9b 1e6c6f2 0550b9b ceffbde 0550b9b 1e6c6f2 0550b9b 1e6c6f2 0550b9b ceffbde 0550b9b ceffbde 0550b9b 1e6c6f2 0550b9b ceffbde 0550b9b ceffbde 0550b9b 1e6c6f2 0550b9b 1e6c6f2 0550b9b ceffbde 0550b9b ceffbde 0550b9b ceffbde 0550b9b ceffbde 0550b9b ceffbde 0550b9b ceffbde 0550b9b ceffbde 0550b9b ceffbde bef3741 64322bd bef3741 64322bd 0550b9b 1e6c6f2 0550b9b 1e6c6f2 0550b9b 1e6c6f2 64322bd 0550b9b 64322bd 0550b9b ceffbde 64322bd 1e6c6f2 64322bd 1e6c6f2 0550b9b 64322bd 1e6c6f2 64322bd 0550b9b 1e6c6f2 64322bd ceffbde 64322bd 0550b9b 64322bd 0550b9b 64322bd 1e6c6f2 0550b9b ceffbde 64322bd ceffbde 64322bd bef3741 64322bd bef3741 64322bd 0550b9b 64322bd ceffbde 64322bd 0550b9b 64322bd ceffbde 0f91f56 ceffbde 64322bd 0550b9b 64322bd 1e6c6f2 64322bd 0550b9b 64322bd 1e6c6f2 64322bd 0550b9b 64322bd 0550b9b 64322bd 0550b9b 64322bd 1e6c6f2 64322bd bef3741 0550b9b 64322bd 0550b9b 64322bd 0550b9b 64322bd 0f91f56 64322bd 1e6c6f2 0550b9b 1e6c6f2 0550b9b 64322bd 1e6c6f2 64322bd 0550b9b 64322bd 0550b9b 1e6c6f2 64322bd 0550b9b ceffbde 1e6c6f2 64322bd 0550b9b 1e6c6f2 64322bd 0550b9b 05bf4a2 1e6c6f2 64322bd 0550b9b 64322bd 0550b9b 64322bd 0550b9b 64322bd 1e6c6f2 bef3741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
##############################################
# app.py
##############################################
import os
import json
import gradio as gr
from openai import OpenAI
##############################################################################
# 1. 读取外部文件: furry_species.json & gender_rules.json
##############################################################################
# 假设 furry_species.json 的结构是多级字典: { "AQUATICS ...": { "Cetaceans": [], ...}, ... }
try:
with open("furry_species.json", "r", encoding="utf-8") as f:
FURRY_DATA = json.load(f)
except:
FURRY_DATA = {}
# gender_rules.json: { "male": "...", "female": "...", "intersex": "...", "genderless": "..." }
try:
with open("gender_rules.json", "r", encoding="utf-8") as f:
GENDER_RULES = json.load(f)
except:
GENDER_RULES = {}
##############################################################################
# 2. 构造多级下拉菜单:先选“主分类”,再选“子分类”
##############################################################################
def get_top_categories(furry_data):
"""获取所有顶级分类 (keys)"""
return sorted(list(furry_data.keys()))
def get_sub_categories(furry_data, top_category):
"""
根据所选 top_category, 返回二级分类列表
furry_data[top_category] -> { "Cetaceans": [...], "FishFurs": [...], ... }
"""
if top_category in furry_data:
return sorted(list(furry_data[top_category].keys()))
return []
def get_species_list(furry_data, top_category, sub_category):
"""
返回最终物种列表
furry_data[top_category][sub_category] -> list
"""
if (
top_category in furry_data
and sub_category in furry_data[top_category]
):
return sorted(furry_data[top_category][sub_category])
return []
##############################################################################
# 3. 调用逻辑:GPT 或 DeepSeek
##############################################################################
def generate_tags_and_description(prompt, gender_option, top_cat, sub_cat, species_item, api_mode, api_key):
"""
1) 构造 tags: gender, base_prompt, furry_species
2) 读取 gender_rules 并拼入 system prompt
3) 调用 GPT/DeepSeek
4) 输出 (tags + 自然语言描述)
"""
if not api_key:
return "Error: No API Key provided."
# 性别
tags = {}
if gender_option == "Trans_to_Male":
tags["gender"] = "male"
rule_text = GENDER_RULES.get("male", "")
elif gender_option == "Trans_to_Female":
tags["gender"] = "female"
rule_text = GENDER_RULES.get("female", "")
elif gender_option == "Trans_to_Mannequin":
tags["gender"] = "genderless"
rule_text = GENDER_RULES.get("genderless", "")
elif gender_option == "Trans_to_Intersex":
tags["gender"] = "intersex"
rule_text = GENDER_RULES.get("intersex", "")
else:
# Furry
tags["gender"] = "furry"
rule_text = (
GENDER_RULES.get("male", "") + "\n\n" # 你可以根据自己的业务需求处理
+ GENDER_RULES.get("female", "") + "\n\n"
+ GENDER_RULES.get("intersex", "") + "\n\n"
+ GENDER_RULES.get("genderless", "")
) # 或者只给一个简要 furry rule
# 选定物种
final_species = "unknown"
if top_cat and sub_cat and species_item:
final_species = f"{top_cat} > {sub_cat} > {species_item}"
tags["furry_species"] = final_species
# 原始提示词
tags["base_prompt"] = prompt
# BaseURL & 模型
if api_mode == "GPT":
base_url = None
model_name = "gpt-3.5-turbo"
else:
base_url = "https://api.deepseek.com"
model_name = "deepseek-chat"
client = OpenAI(api_key=api_key)
if base_url:
client.base_url = base_url
# 将 tags 拼为字符串
tags_str = "\n".join([f"{k}: {v}" for k, v in tags.items() if v])
# system prompt 带上Gender Rules
system_prompt = (
"You are a creative assistant that generates detailed and imaginative scene descriptions "
"for AI generation prompts. Focus on the details provided, incorporate them into a cohesive narrative, "
"and follow these gender/furry rules:\n\n"
f"{rule_text}\n\n"
"When you respond, do not exceed five sentences. Return your final text in English or relevant language.\n"
)
# Chat
try:
resp = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": f"Here are the tags:\n{tags_str}\nPlease generate a vivid, imaginative scene description."
},
],
)
desc_text = resp.choices[0].message.content.strip()
# 输出 (tags + desc)
return f"=== Tags ===\n{tags_str}\n\n=== Description ===\n{desc_text}"
except Exception as e:
return f"{api_mode} generation failed. Error: {e}"
def translate_text(content, lang, api_mode, api_key):
"""
调用 GPT 或 DeepSeek 做翻译
"""
if not api_key:
return "Error: No API Key provided."
if not content.strip():
return ""
if api_mode == "GPT":
base_url = None
model_name = "gpt-3.5-turbo"
else:
base_url = "https://api.deepseek.com"
model_name = "deepseek-chat"
client = OpenAI(api_key=api_key)
if base_url:
client.base_url = base_url
system_prompt = f"You are a translator. Translate the following text to {lang}:"
try:
resp = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": content},
],
)
return resp.choices[0].message.content.strip()
except Exception as e:
return f"{api_mode} translation failed. Error: {e}"
##############################################################################
# 4. Gradio 界面
##############################################################################
def build_interface():
with gr.Blocks() as demo:
gr.Markdown("## Prompt Furry/Gender Transformer (GPT / DeepSeek)")
with gr.Row():
with gr.Column():
api_mode = gr.Radio(
label="选择API (GPT or DeepSeek)",
choices=["GPT", "DeepSeek"],
value="GPT"
)
api_key = gr.Textbox(
label="API Key",
type="password"
)
# 性别
gender_option = gr.Radio(
label="转换目标",
choices=[
"Trans_to_Male",
"Trans_to_Female",
"Trans_to_Mannequin",
"Trans_to_Intersex",
"Trans_to_Furry"
],
value="Trans_to_Male"
)
# 顶级分类
top_cat_dd = gr.Dropdown(
label="Furry: 主分类 (Top Category)",
choices=get_top_categories(FURRY_DATA),
value=None,
visible=False
)
# 二级分类
sub_cat_dd = gr.Dropdown(
label="Furry: 子分类 (Sub-Category)",
choices=[],
value=None,
visible=False
)
# 物种
species_dd = gr.Dropdown(
label="Furry: 物种 (Species)",
choices=[],
value=None,
visible=False
)
# 性别选项变化 -> 显示或隐藏 Furry 下拉
def show_furry_options(chosen):
if chosen == "Trans_to_Furry":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
gender_option.change(
fn=show_furry_options,
inputs=[gender_option],
outputs=[top_cat_dd, sub_cat_dd, species_dd]
)
# 顶级分类 -> 更新子分类
def on_top_cat_select(selected):
subs = get_sub_categories(FURRY_DATA, selected)
return gr.update(choices=subs, value=None)
top_cat_dd.change(
fn=on_top_cat_select,
inputs=[top_cat_dd],
outputs=[sub_cat_dd]
)
# 子分类 -> 更新物种
def on_sub_cat_select(top_c, sub_c):
sp = get_species_list(FURRY_DATA, top_c, sub_c)
return gr.update(choices=sp, value=None)
sub_cat_dd.change(
fn=on_sub_cat_select,
inputs=[top_cat_dd, sub_cat_dd],
outputs=[species_dd]
)
with gr.Column():
user_prompt = gr.Textbox(
label="提示词 (Prompt)",
lines=4
)
output_result = gr.Textbox(
label="(tags + 自然语言描述)",
lines=10
)
with gr.Row():
translate_lang = gr.Dropdown(
label="翻译语言",
choices=["English", "Chinese", "Japanese", "French", "German", "Spanish"],
value="English"
)
translate_result = gr.Textbox(
label="翻译结果",
lines=10
)
######################################################################
# 生成
######################################################################
def on_generate(prompt, gender, tc, sc, spc, mode, key, lang):
# 1) 生成
tags_desc = generate_tags_and_description(prompt, gender, tc, sc, spc, mode, key)
# 2) 翻译
trans_txt = translate_text(tags_desc, lang, mode, key)
return tags_desc, trans_txt
user_prompt.submit(
fn=on_generate,
inputs=[user_prompt, gender_option, top_cat_dd, sub_cat_dd, species_dd, api_mode, api_key, translate_lang],
outputs=[output_result, translate_result]
)
gen_btn = gr.Button("生成 / Generate")
gen_btn.click(
fn=on_generate,
inputs=[user_prompt, gender_option, top_cat_dd, sub_cat_dd, species_dd, api_mode, api_key, translate_lang],
outputs=[output_result, translate_result]
)
return demo
if __name__ == "__main__":
demo = build_interface()
demo.launch() |