File size: 11,176 Bytes
05bf4a2
64322bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05bf4a2
64322bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05bf4a2
64322bd
 
 
 
 
 
 
 
 
05bf4a2
64322bd
 
 
 
14b159d
05bf4a2
64322bd
14b159d
64322bd
14b159d
05bf4a2
64322bd
14b159d
 
 
64322bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05bf4a2
64322bd
 
 
 
 
 
 
 
 
 
 
 
 
14b159d
64322bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14b159d
 
 
 
 
64322bd
14b159d
64322bd
 
 
 
 
14b159d
64322bd
 
 
 
 
 
05bf4a2
64322bd
 
 
 
 
 
 
 
 
 
 
 
05bf4a2
 
 
 
64322bd
 
 
 
14b159d
64322bd
 
 
 
 
 
 
05bf4a2
14b159d
 
64322bd
 
 
 
 
 
 
 
 
05bf4a2
 
 
 
 
 
 
 
 
 
 
64322bd
 
05bf4a2
 
64322bd
 
05bf4a2
64322bd
 
 
05bf4a2
 
64322bd
 
05bf4a2
64322bd
 
 
05bf4a2
64322bd
 
 
 
 
 
 
 
 
 
 
 
05bf4a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os 
import gradio as gr
import openai

##############################################################################
# 1. GPT 或 DeepSeek 调用示例函数
##############################################################################
def generate_natural_language_description_gpt(tags, api_key, base_url=None, model="gpt-4"):
    """
    使用 OpenAI GPT 生成自然语言描述的示例函数。
    """
    if not api_key:
        return "Error: GPT API Key not provided."

    # 设置 API
    openai.api_key = api_key
    if base_url:
        openai.api_base = base_url

    # 将 dict 转成可读字符串
    tag_descriptions = "\n".join([
        f"{key}: {', '.join(value) if isinstance(value, list) else value}"
        for key, value in tags.items() if value
    ])

    try:
        response = openai.ChatCompletion.create(
            model=model,
            messages=[
                {
                    "role": "system",
                    "content": (
                        "You are a creative assistant that generates detailed and imaginative scene descriptions "
                        "for AI generation prompts. Focus on the details provided and incorporate them into a "
                        "cohesive narrative. Use at least three sentences but no more than five sentences."
                    ),
                },
                {
                    "role": "user",
                    "content": f"Here are the tags and details:\n{tag_descriptions}\nPlease generate a vivid, imaginative scene description.",
                },
            ]
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        return f"GPT generation failed. Error: {e}"


def generate_natural_language_description_deepseek(tags, api_key, base_url=None):
    """
    使用 DeepSeek API 生成自然语言描述的示例函数。
    这里演示伪代码,你需要根据实际 DeepSeek 的文档进行实现。
    """
    if not api_key:
        return "Error: DeepSeek API Key not provided."
    
    # 伪代码示例(需根据你的 DeepSeek API 文档做实际实现)
    # import requests
    # response = requests.post(
    #     url=base_url or "https://api.deepseek.com/xxx", 
    #     headers={"Authorization": f"Bearer {api_key}"},
    #     json={"tags": tags}
    # )
    # return response.json()["description"]
    return "DeepSeek 生成的描述(此处为示例伪代码)"


##############################################################################
# 2. 翻译示例函数(使用 GPT 或 DeepSeek)
##############################################################################
def translate_text_with_gpt(text, target_language, api_key, base_url=None, model="gpt-4"):
    """
    使用 GPT 来进行翻译的简单示例。
    """
    if not api_key:
        return "Error: GPT Translation Key not provided."

    openai.api_key = api_key
    if base_url:
        openai.api_base = base_url

    try:
        system_prompt = f"You are a professional translator. Translate the following text to {target_language}:"
        response = openai.ChatCompletion.create(
            model=model,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": text},
            ]
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        return f"GPT translation failed. Error: {e}"


def translate_text_with_deepseek(text, target_language, api_key, base_url=None):
    """
    使用 DeepSeek 来进行翻译的简单示例(伪代码)。
    """
    if not api_key:
        return "Error: DeepSeek Translation Key not provided."
    # 同样需要根据 DeepSeek 的文档来实现
    return f"DeepSeek翻译后的文本(示例)。目标语言:{target_language}"


##############################################################################
# 3. 根据用户选择进行提示词转换并调用 GPT/DeepSeek 生成描述
##############################################################################
def transform_prompt(prompt, gender_option, furry_species, api_mode, api_key):
    """
    性别/物种转换的简单示例逻辑,然后调用相应 API。
    你可在此处结合“关于Male/Female/ambiguous/intersex的details”添加更复杂的处理。
    """
    tags = {}
    
    # 根据选择设置性别或物种标签
    if gender_option == "Trans_to_Male":
        # 这里可以参考你的细节 rules 做更加复杂的转换
        tags["gender"] = "male"
    elif gender_option == "Trans_to_Female":
        tags["gender"] = "female"
    elif gender_option == "Trans_to_Mannequin":
        # 无明显二性征
        tags["gender"] = "genderless"
    elif gender_option == "Trans_to_Intersex":
        tags["gender"] = "intersex"
    elif gender_option == "Trans_to_Furry":
        tags["gender"] = "furry"
        tags["furry_species"] = furry_species or "unknown"
    
    # 原始提示词
    tags["base_prompt"] = prompt

    # 根据选择的 API 调用对应的函数
    if api_mode == "GPT":
        scene_description = generate_natural_language_description_gpt(tags, api_key)
    else:  # DeepSeek
        scene_description = generate_natural_language_description_deepseek(tags, api_key)
    
    return scene_description


##############################################################################
# 4. 调用翻译函数
##############################################################################
def do_translation(scene_desc, translate_language, api_mode, api_key):
    """
    根据选择的 API(GPT/DeepSeek)进行翻译。
    """
    if not scene_desc.strip():
        return ""  # 无内容则不翻译

    if api_mode == "GPT":
        return translate_text_with_gpt(scene_desc, translate_language, api_key)
    else:
        return translate_text_with_deepseek(scene_desc, translate_language, api_key)


##############################################################################
# 5. 搭建 Gradio 界面
##############################################################################
def build_interface():
    with gr.Blocks() as demo:

        gr.Markdown("## Prompts_TransTool-提示词一键性别物种转换器")

        with gr.Row():
            with gr.Column():
                # 选择调用哪个 API
                api_mode = gr.Radio(
                    label="选择 API 服务 (Choose API Service)",
                    choices=["GPT", "DeepSeek"],
                    value="GPT"
                )

                # 输入 API Key
                api_key = gr.Textbox(
                    label="API 密钥 (API Key)",
                    type="password",
                    placeholder="请输入你的 GPT 或 DeepSeek API 密钥"
                )

                # 性别 / Furry 选择
                gender_option = gr.Radio(
                    label="性别 / Furry 选项 (Gender / Furry)",
                    choices=[
                        "Trans_to_Male", 
                        "Trans_to_Female", 
                        "Trans_to_Mannequin", 
                        "Trans_to_Intersex", 
                        "Trans_to_Furry"
                    ],
                    value="Trans_to_Male",
                )

                # 选择 Furry 物种
                furry_species = gr.Dropdown(
                    label="Furry 物种 (Furry Species)",
                    choices=["Wolf", "Fox", "Tiger", "Lion"],  
                    value=None,
                    visible=False  # 初始不可见
                )

                # 当性别选项切换时,如果选择 Furry,就显示物种下拉,否则隐藏
                def show_furry_species(gender):
                    return gr.update(visible=(gender == "Trans_to_Furry"))

                gender_option.change(
                    show_furry_species, 
                    inputs=[gender_option], 
                    outputs=[furry_species]
                )

            with gr.Column():
                # 输入 prompt
                user_prompt = gr.Textbox(
                    label="提示词 (Prompt)",
                    lines=5,
                    placeholder=(
                        "Please Enter your prompt words. \n"
                        "在此输入你的提示词,例如:一位穿着红色连衣裙的少女,坐在落日余晖下的草地上..."
                    )
                )

                # 输出场景描述
                generated_output = gr.Textbox(
                    label="转换后的提示词 (Generated Trans-Description)",
                    lines=7
                )

        # 翻译区域
        with gr.Row():
            translate_language = gr.Dropdown(
                label="翻译语言 (Translation Language)",
                # 可自行添加更多语言选项
                choices=["English", "Chinese", "Japanese", "French", "German", "Dutch", "Arabic", "Russian", "Persian", "Italian"],
                value="English",
            )
            translated_text = gr.Textbox(
                label="翻译结果 (Translated Result)",
                lines=7
            )

        ######################################################################
        # 事件绑定
        ######################################################################
        
        # 新增:生成时,直接返回「转换结果」和「翻译结果」并一起更新
        def on_generate(prompt, gender, furry, mode, key, lang):
            # 1) 先做性别/物种转换,拿到“转换后”提示词
            trans_desc = transform_prompt(prompt, gender, furry, mode, key)
            # 2) 立刻翻译
            trans_result = do_translation(trans_desc, lang, mode, key)
            # 返回两项
            return trans_desc, trans_result

        # 当用户在 prompt 输入后按回车时,触发生成场景描述 + 翻译
        user_prompt.submit(
            fn=on_generate,
            inputs=[user_prompt, gender_option, furry_species, api_mode, api_key, translate_language],
            outputs=[generated_output, translated_text],
        )

        # 点击按钮也触发同样的逻辑
        generate_button = gr.Button("生成 / Generate")
        generate_button.click(
            fn=on_generate,
            inputs=[user_prompt, gender_option, furry_species, api_mode, api_key, translate_language],
            outputs=[generated_output, translated_text],
        )

        # 当用户切换翻译语言时,如果已经有转换后的内容,则再翻译一次
        def on_translate(scene_desc, lang, mode, key):
            return do_translation(scene_desc, lang, mode, key)

        # 注意:这里只更新“翻译结果”一项
        translate_language.change(
            fn=on_translate,
            inputs=[generated_output, translate_language, api_mode, api_key],
            outputs=[translated_text]
        )

    return demo


# 在 Spaces 启动
if __name__ == "__main__":
    demo = build_interface()
    demo.launch()